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Introduction

Picard-Vessiot theory can be described as Galois theory of linear differ-
ential equations. This theory is a generalization of classical Galois theory for
polynomial equations to homogeneous linear differential equations. Picard-
Vessiot theory is due to E. Picard and E. Vessiot and in rigorous form to E.
Kolchin, who built on the work of J.F. Ritt in differential algebra. It was
made more accessible by the book of I. Kaplansky [15]. We refer the reader
also to [7], [8], [22] and [28] for the results of Picard-Vessiot theory.

Picard-Vessiot theory has been built under the hypothesis that the field
of constants CK of the differential field K, over which the differential equa-
tion is defined, is algebraically closed. In this case, one obtains existence and
uniqueness, up to K-differential isomorphisms, of the Picard-Vessiot exten-
sion of the differential equation and that the differential Galois group of the
differential equation, defined as the group of K-differential automorphisms of
its Picard-Vessiot extension, is a linear algebraic group over CK . It is worth
considering whether the condition CK algebraically closed can be weakened.
In particular, the case of real fields is interesting.

Many interesting and significant results concerning differential algebra for
real fields can be found in papers by M. Singer, T. Dyckerhoff, T. Grill, M.
Knebusch, M. Tressl (see [35], [9], [12], [13]). But an existence theorem for
Picard-Vessiot extension even in the case CK = R has never been proved.
The reason for that might be a commentary of Armand Borel, which can
be found in his article contained in Selected Works of Ellis Kolchin (see
[3]). Borel wrote about the proof by Kolchin of the existence theorem of
Picard-Vessiot theory:

This is under our standing assumption that CF is algebraically closed (of
char. 0). If not, then Seidenberg has produced an equation such that CE 6= CF
for all differential field extensions E generated over F by a fundamental set
of solutions of that equation.

But if we take a close look at the example of Seidenberg mentioned above
(see [32], [18], chapter 6, ex.1 or chapter 4.1 of this work) we will see that
the base field F is not a real field.

A Picard-Vessiot extension is a differential field extension K ⊂ L such
that there exists a following homogeneous linear ordinary differential equa-
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tion L(Y ) := Y (n) +an−1Y
(n−1) + . . .+a1Y

′+a0Y = 0 with coefficients in K
having a fundamental set of solutions y1, . . . , yn in L which differentially gen-
erates L over K and moreover the fields of constants of K and L coincide.
Kolchin proved the existence of a Picard-Vessiot extension for a given ho-
mogeneous linear ordinary differential equation over a differential field with
algebraically closed field of constants. In one of his papers Kolchin indicates
that the difficulty in proving the existence of a Picard-Vessiot extension for
a given equation lies in proving that such an extension brings in no new con-
stants (see [19]). He also comments that this problem was formulated earlier
in 1933 by Reinhold Baer in his commentary which appears in Felix Klein’s
book Vorlesungen über hypergeometrische Funktion (see [16], page 333).

The main result of this work is proving that for a given homogeneous lin-
ear ordinary differential equation defined over a real differential field K with
field of constants a real closed field F there exists a Picard-Vessiot extension
which is also a real field.

In our work we do not use Tannakian categories, so our methods are not
restricted to the linear case. This should make it possible to generalize our
results to the non linear case, following the landmark paper of Malgrange [23].

Our work is organised as follows:

In chapter 1 we introduce the notions of differential ring and differential
field and we study some preliminary facts of differential algebra. We also
prove Ritt-Raudenbusch Basis Theorem which is an equivalent of Hilbert’s
Basis Theorem for radical differential ideals and a differential version of pri-
mary decomposition theorem. We introduce the very useful notion of Taylor
morphism and present a differential version of the primitive element theorem.

In chapter 2 we give a brief introduction to the theory of real and real
closed fields. We present Tarski-Seidenberg Principle and its consequences.
We also study some other results needed in further chapters, like Skolem-
Löwenheim Theorem.

In chapter 3 we introduce the basic definitions and state some essential
results of Picard-Vessiot theory. We consider differential fields of character-
istic zero with algebraically closed fields of constants. Here we present the
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theorem on the existence and uniqueness of Picard-Vessiot extension in such
case and the Fundamental Theorem of Picard-Vessiot Theory.

The last chapter contains our new results. We study homogeneous linear
ordinary differential equations defined over a real differential field K differen-
tially finitely generated over a real closed field F considered as a differential
field with trivial derivation, with field of constants equal to F . In this case
we construct a real Picard-Vessiot extension. We obtain the general result by
applying the Kuratowski-Zorn lemma. Finally, we give a short commentary
on the Fundamental Theorem of Picard-Vessiot Theory in the case consid-
ered.

List of notations.

If K is a field then we denote by:
K[X1, . . . , Xn] the ring of polynomials in X1, . . . , Xn over K
K(X1, . . . , Xn) the field of rational functions in X1, . . . , Xn over K
K{X1, . . . , Xn} the ring of differential polynomials in X1, . . . , Xn overK
K〈X1, . . . , Xn〉 the field of differential rational functions in X1, . . . , Xn over K
K[[X]] the ring of power series over K
K((X)) the field of fractions of K[[X]]

If S is a subset of a ring (resp. differential ring) A then we denote by:
(S) the ideal in A generated by S
[S] the differential ideal in A generated by S

i.e. generated by elements of S and their derivatives
{S} the smallest radical differential ideal in A containing S

If A is a subring of a ring B, and S is a subset of B then we denote by
A[S] the smallest subring of B containing A and S.
If K is a subfield of a field L, and S is a subset of L then we denote by K(S)
the smallest subfield of L containing A and S.
If A ⊂ B is a differential ring extension, and S is a subset of B then we
denote by A{S} the smallest differential subring of B containing A, S and
all derivatives of elements of S.
If K ⊂ L is a differential field extension, and S is a subset of L then we
denote by K〈S〉 the smallest differential subfield of L containing A, S and
all derivatives of elements of S.
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For a given field K we denote by K its algebraic closure. If K is an
ordered field, then by K

r
we denote the real closure of K.

If K is a differential field (resp. ring), then by CK we denote its subfield
(resp. subring) of constants.

By c we denote the cardinality of R, i.e. continuum; by ℵ an arbitrary
cardinality.
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Chapter 1

Differential algebra

In this chapter we recall some basic definitions and facts of differential
algebra.

1.1 Differential rings and their extensions

Definition 1.1.1. Let A be a ring. A map d : A→ A satisfying

d(a+ b) = d(a) + d(b),

d(ab) = d(a)b+ ad(b)

is called a derivation of the ring A. So it is an additive map satisfying Leibniz
rule. A commutative ring with identity endowed with a derivation is called a
differential ring.

We write a′ = d(a) and a′′, a′′′, . . . a(n) for succesive derivations of a ∈ A.
A differential ring which is a field is called a differential field. Note that:

d(1) = 0, d(a−1) = −d(a)

a2
and d(an) = nan−1d(a),

where a−1 denotes the inverse of a.

Examples:

1) The simplest example of a derivation is the trivial derivation i.e. ∀a ∈
A : d(a) = 0. Note that every commutative ring with identity can be seen as
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a differential ring with the trivial derivation. Over Z and over Q the trivial
derivation is the only possible one.

2) The ring of infinitely differentiable functions C∞(R) with the usual
derivation d

dx
is a differential ring.

3) The ring of analytic functions O(C) wit the usual derivation d
dz

is also
a differential ring.

4) Every vector field is a derivation.

If A is an integral domain, we can extend the derivation from A to the
quotient field Fr(A) in a unique way, by defining(a

b

)′
=
a′b− ab′

b2
for

a

b
∈ Fr(A).

In the same way we can extend derivation from a differential ring with no
zero divisors to the ring of fractions S−1A, where S is a multiplicative subset
of A. For example the differential ring O(C) is an integral domain. We can
extend its derivation to its field of fractions i.e. the field of meromorphic
functions.

Let A be a differential ring. By A[X] we denote the polynomial ring in
one indeterminate over A. We can extend the derivation from A to A[X], by
assigning to X ′ an arbitrary value in A[X]. Analogously, if K is a differen-
tial field, we extend derivation to the field of rational functions K(X). By
iteration, we extend derivation to A[X1, . . . , Xn] or K(X1, . . . Xn).

In any differential ring A we can distinguish a subring

CA := {a ∈ A|d(a) = 0},

called ring of constants. If A is a field, so is CA.

Let (A, d) and (B,D) be differential rings. An inclusion A ⊂ B is a dif-
ferential ring extension, if the derivation of B extends the derivation of A,
i.e. D|A = d. Let S be a subset of a differential ring B. We denote by A{S}
the smallest differential subring of B containing A, S and the derivatives of
elements of S. It is the differential A-subalgebra of B generated by S over A.

Analogously, if K ⊂ L is a differential field extension, S is a subset of L,
we denote by K〈S〉 the differential subfield of L generated by S over K.

6



If S is a finite set, then the extension K ⊂ K〈S〉 is called differentially finitely
generated.

1.2 Ideals and morphisms

Let I be an ideal of a differential ring A.

Definition 1.2.1. I is a differential ideal if d(I) ⊂ I.

It is easy to see that an intersection of differential ideals is a differential
ideal.

Definition 1.2.2. Let A and B be differential rings. A map ϕ : A → B is
called a differential morphism if it is a morphism of rings i.e.

ϕ(a+ b) = ϕ(a) + ϕ(b),

ϕ(ab) = ϕ(a)ϕ(b),

ϕ(1) = 1

and moreover
[ϕ(a)]′ = ϕ(a′).

In an obvious way we define differential isomorphism and differential au-
tomorphism.

Let now I be a differential ideal of a differential ring A. The derivation
of A induces a derivation in the quotient ring A/I, defined by

d(a) = d(a),

where a denote the class of an element a ∈ A. If I is a differential ideal of
A, then A→ A/I is naturally a differential morphism.

If ϕ : A→ B is a differential morphism, then Kerϕ is a differential ideal
in A and ϕ induces a differential isomorphism

ϕ : A/Kerϕ→ Imϕ.

Notation. Let A be a differential ring and let S be a subset of A.
By [S] we will denote the differential ideal generated by S, i.e. the ideal
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generated by the elements of S and their derivatives. If S is a finite set, i.e.
S = {s1, . . . , sn} we will write [s1, . . . , sn].

By (S) we will denote the ideal generated by S. In particular, when
S = {s1, . . . , sn} we will write (s1, . . . , sn).

The radical rad(I) of the ideal I is the intersection of all prime ideals
containing I. But the radical of a differential ideal is not always a differential
ideal. Hence it is not true in general that the radical of a differential ideal is an
intersection of prime differential ideals. Differential rings for which radicals of
their differential ideals are also differential ideals are called Keigher rings. For
example every differential Q-algebra is a Keigher ring (see corollary 1.4.1). A
differential ring which is also an algebra over Q is called a Ritt algebra. Also
any ring of constants is a Keigher ring. This way we can see abstract (i.e.
non-differential) rings as Keigher rings. If A is a Ritt algebra, I is a diferential
ideal of A and P is the family of prime differential ideals containing I, then
rad(I) =

⋂
P (see theorem 1.5.1)

1.3 Differential polynomials

Let A be a differential ring. Let A[Yi] denote the polynomial ring in the
indeterminates Yi, i ∈ N ∪ {0} over A. We define Y ′i := Yi+1. In this way
we obtain a differential ring, which we denote by A{Y }. The elements of
A{Y } are called differential polynomials in the indeterminate Y . These are
ordinary polynomials in Y and their derivatives.

By proceeding inductively we obtain the ring of differential polynomials
A{Y1, . . . , Yn} in n variables. We observe that A{Y1, . . . , Yn} is a differential
A-algebra differentially generated over A by {Y1, . . . , Yn} with ring of con-
stants CA{Y1,...,Yn} = CA. If A is an integral domain, so is A{Y1, . . . , Yn}.
However there is no an equivalent of Hilbert Basis Theorem. The ring
A{Y1, . . . , Yn} is no longer noetherian.

If K is a differential field, then K{Y } has no zero divisors. As it was said
before, we can extend derivation to the field of fractions, which we denote by
K〈Y 〉. The elements of K〈Y 〉 are called differential rational functions of Y .
In a similar way we can obtain the field of rational functions K〈Y1, . . . , Yn〉
in n variables.

Moreover, if A is a differential K-algebra and a1, . . . , an ∈ A are arbitrary
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elements, then there exists a unique differential K-algebra homomorphism
ϕ : K{Y1, . . . , Yn} → A such that ϕ(Yi) = ai for i = 1, . . . , n. We write
f(a1, . . . , an) instead of ϕ(f).

If K ⊂ L is a differential field extension, then elements a1, . . . , an ∈ L
are said to be differentially algebraically dependent over K if there exists a
nonzero differential polynomial f ∈ K{Y1, . . . , Yn} such that f(a1, . . . , an) =
0. Otherwise we call them differentially algebraically independent. An ele-
ment a ∈ L is differentially algebraic over K if there exists a nonzero differ-
ential polynomial f ∈ K{Y } such that f(a) = 0.

Let A be a differential ring.

Definition 1.3.1. The greatest j such that Y (j) appears in f ∈ A{Y } is
called the order of f . We denote it by ord(f).

If f ∈ A{Y } is of order n, then we can write it in the form

f(Y ) =
k∑
i=0

gi(Y, Y
′, . . . , Y (n−1))(Y (n))i,

where k is the degree of f in Y (n) and gk is the leading coefficient of f (J. F.
Ritt called it the initial of f).

Definition 1.3.2. Let f ∈ A{Y } such that ord(f) = n. We define s := ∂f
∂Y (n)

and call s the separant of f.

When we compute the separant of f we treat f as an algebraic polyno-
mial f ∈ A[Y, Y ′, . . . , Y (n)], i.e. we treat as constants the elements of A and
all lower derivatives of Y . For example: the separant of f(Y ) = (Y ′′′)5−4Y ′′

is s(Y ) = 5(Y ′′′)4.

If a ∈ L is an element differentially algebraic over K, then the mini-
mal polynomial of a over K is an irreducible polynomial f ∈ K{Y } of the
lowest order, say r, and of smallest degree in Y (r). Then the abstract field
K(a, a, . . . a(r)) is a differential field. We differentiate f(a) = 0 to see that
a(r+1) ∈ K(a, a, . . . a(r)). The elements a, a′, . . . a(r−1) are then algebraically
independent over K, and a(r) is algebraic over K(a, a, . . . a(r−1))
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We define an order relation of the ring A{Y } called ranking. Let f, g ∈
A{Y }. We say that f is of lower rank than g (or that f is lower than g) if
ord(f) < ord(g) or if

ord(f) = ord(g) = q and degY (q)f < degY (q)g.

We denote it f << g. The relation << is transitive. Two differential poly-
nomials f, g ∈ A{Y } are of the same rank if there is no difference established
by the foregoing criteria.

Fact 1.3.1. Every subset S ⊂ A{Y } contains a differential polynomial which
is not of higher rank than any other differential polynomial in S.

Proof. If S ∩A 6= ∅ then any differential polynomial from S ∩A satisfies
our requirements. If S ∩ A = ∅, we denote

q = min{ord(f) | f ∈ S} and S1 = {f ∈ S | ord(f) = q}.

We denote t = min{degY (q)f | f ∈ S1}. Every differential polynomial f0 ∈ S1

of degree t satisfies our requirements, i.e. no differential polynomial from S
is of lower rank than f0.

�

So << is a well-order relation.

Remark 1.3.1. For a given differential polynomial f the separant of f and
the leading coefficient of f are both lower than f .

1.4 Ritt-Raudenbush basis theorem

In this section we will state and prove Ritt-Raudenbush basis theorem
which is a crucial point in proving the existence of finite irredundant decom-
position into prime differential ideals for radical differantial ideals. It is an
analog of the Hilbert basis theorem, but not straightforward. If we replace
ideals by differential ideals we obtain a false statement. For example differ-
ential ideals in A{Y } of the form In = [Y 2, (Y ′)2, . . . , (Y (n))2] do not satisfy
ascending chain condition (ACC). This property holds true for radical differ-
ential ideals over a Ritt algebra.
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Notation. For an arbitrary subset S of a differential ring A we denote
by {S} the smallest radical differential ideal containing S. If A is a Keigher
ring, then {S} = rad([S]).

Now we will prove some auxiliary lemmas.

Lemma 1.4.1. Let A be a differential ring and let I be a radical differential
ideal in A. Then

∀a, b ∈ A : ab ∈ I ⇒ a′b ∈ I ∧ ab′ ∈ I.

Proof. Since I is a differential ideal, then (ab)′ = a′b + ab′ ∈ I. Then we
multiply by a′b and obtain that (a′b)2 + aba′b′ ∈ I. Since I is radical, then
a′b ∈ I. Analogously we prove that ab′ ∈ I

�

Lemma 1.4.2. Let A be a differential ring and S a multiplicative subset of
A. Let I be a radical differential ideal in A. We denote

T := {a ∈ A : aS ⊂ I}.

Then T is a radical differential ideal. We denote it by (I : S).

Proof. Straightforwardly we obtain that T is an ideal. By lemma 1.4.1 we
get that a′S ⊂ I. If an ∈ T , then anS ⊂ I. In particular ∀s ∈ S : ansn ∈ I.
Since I is radical, then as ∈ I. So a ∈ T .

�

Lemma 1.4.3. Let A be a differential ring and let x ∈ A. If T and S are
multiplicative subsets of A, then

1. x{S} ⊂ {xS}

2. {S}{T} ⊂ {ST}

Proof. 1. By lemma 1.4.2 T = {a ∈ A : xa ∈ {xS}} is a radical
differential ideal. Since S ⊂ T , then {S} ⊂ T = ({xS} : x).
2. From 1. we have that a{T} ⊂ {aT}, for all a ∈ {S}.
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�

Lemma 1.4.4. Let A be a Ritt algebra. Then

∀a ∈ A ∀n ∈ N (a′)2n−1 ∈ [an].

Proof. We have (an)′ = nan−1a′. Since Q ⊂ A, we can divide by n and
obtain that

an−1a′ ∈ [an]. (1.1)

Hence we have the thesis for n = 1, i.e. a′ ∈ [a].
Let now n > 1. By differentiating (1.1) we obtain

(n− 1)an−2(a′)2 + an−1a′′ ∈ [an].

We multiply by a′ and we have

(n− 1)an−2(a′)3 + an−1a′′a′ ∈ [an].

Using (1.1) we obtain that an−2(a′)3 ∈ [an]. Hence we have the thesis for
n = 2, i.e. (a′)3 ∈ [a2].

In analogous way we obtain the thesis for every n ∈ N.

�

Corollary 1.4.1. Let A be a Ritt algebra and let I be a diferential ideal in
A. Then rad(I) is a radical differential ideal. In particular the nilradical
ideal rad((0)) is always a differential ideal.

Proof. Let a ∈ rad(I). Then there exists n ∈ N such that an ∈ I. By
lemma 1.4.4 we have that (a′)2n−1 ∈ [an] ⊂ I, so a′ ∈ rad(I).

�

Remark 1.4.1. Let A be a Ritt algebra. Then A has ACC on radical dif-
ferential ideals if and only if every radical differential ideal I in A is finitely
generated, i.e. there exists a1, . . . , an ∈ I such that I = {a1, . . . , an}.
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Proof. Let {Ii}i∈N be a family of radical differential ideals of A such
that Ii ⊆ Ii+1 for every i ∈ N. Let J =

⋃
i∈N Ii. J is a radical differential

ideal in A, so there exists f1, . . . , fs ∈ J such that J = {f1, . . . , fs}. Hence
J =

⋃r
i=1 Ii, where r ∈ N is such that for all i = 1, . . . , s fi ∈ Ir. So

Ii = Ir for all i ≥ r.
Conversely, we assume that A has ACC on radical differential ideals. Let

I be an arbitrary radical differential ideal in A and let Σ denote the set of all
finitely generated radical differential ideals of A contained in I . We observe
that rad((0)) ∈ Σ, hence Σ 6= ∅. So there exist a maximal element in Σ. Let
us denote this element by J = {b1, . . . , bk}. If I 6= J , then we consider the
ideal {b1, . . . , bk, a}, where a ∈ I and a /∈ J . It is a finitely generated radical
differential ideal which strictly contains J . We get a contradiction with the
maximality of J . So I = J and I is finitely generated.

�

Observation. Suppose that the ideal {a, S} is a finitely generated radical
differential ideal of a Ritt algebra A. Then there exist x1, . . . , xk ∈ S such
that {a, S} = {a, x1, . . . , xk}. Indeed, suppose that {a, S} = {y1, . . . , yl}.
By the corollary above we obtain that {a, S} = rad([a, S]). Hence for all
i = 1, . . . , l there exist zij ∈ S and αj, βijk ∈ A such that

yni =
∑

αja
(j) +

∑
βijkz

(k)
ij .

So {a, S} = {a, zij}.

Lemma 1.4.5 (Division lemma). Let A be a Ritt algebra and let f ∈ A{Y }
be irreducible of order n. We consider a polynomial g ∈ [f ] \ {0}. Then
ord(g) ≤ n. Moreover if ord(g) = n, then f divides g.

Proof. STEP 1: We will prove that

∀r ≥ 1 : f (r) = sY (n+r) + fr(Y, Y
′, . . . , Y (n+r−1)),

where s is the separant of f . Since f is of order n it can be written in the
form f =

∑m
i=0 αi(Y

(n))i, where ∀i ≥ 1 : ord(αi) ≤ n − 1. Hence f ′ =∑m
i=0[α′i(Y

(n))i + iαi(Y
(n))i−1Y (n+1)]. We put f1 =

∑m
i=0 α

′
i(Y

(n))i, and we
obtain that f ′ = sY (n+1) + f1, i.e. the formula holds true for r = 1. Suppose
that this holds true for some r ≥ 1. Then f (r+1) = s′Y (n+r) + sY (n+r+1) + f ′r.
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We put fr+1 = f ′r + s′Y (n+r). We have then ord(fr+1) ≤ n + r and f (r+1) =
sY (n+r+1) + fr+1.

STEP 2: We consider g ∈ [f ] \ {0}, i.e. g =
∑k

i=0 aif
(i). For k = 0 the

lemma is true, so let k ≥ 1. If the order of g is higher than n, let us say
n + k, then we may depress it. We substitute Y (n+k) by −fk

s
. We obtain

an equation of the form smg =
∑k−1

i=0 bif
(i). Then we replace Y (n+k−1) by

−fk−1

s
. We repeat the process until we find m and obtain that smg = af , for

a ∈ A{Y }. Now f does not divide s (because f is of higher degree). Since f
is irreducible, then f divides g and ord(f) = ord(g).

�

Lemma 1.4.6. Let A be a Ritt algebra and let f ∈ A{Y } be irreducible of
order n. Then for every g ∈ A{Y }, we can find h ∈ A{Y }, such that

ord(h) ≤ n ∧ ∃m ∈ N : smg = h (mod[f ]),

where s denote the separant of f .

Proof. We carry the proof by induction on <<. We may assume that
ord(g) = n + r, where r ≥ 1. Suppose that degY (n+r)g = m. Then g =∑m

i=1 pi(Y, Y
′, . . . , Y (n+r−1))(Y (n+r))i. Suppose that the thesis holds true for

all p << g. By lemma 1.4.5, there exist fr of order at most n + r − 1 such
that f (r) = sY (n+r) + fr(Y, Y

′, . . . , Y (n+r−1)).
Let h = smg − (f (r))mpm. Then h = smg (mod[f ]). Since h << g, then

by inductive assumption we obtain the thesis.

�

The procedure above is unique. We call h the reminder of g with respect
to f .

Lemma 1.4.7. Let A be a Ritt algebra and let f ∈ A{Y }\A be irreducible of
the form f(Y ) =

∑r
i=0 αi(Y

(n))i, where ord(αi) ≤ n− 1 for i = 1, . . . , r. Let
s denote the separant of f . Then for every g ∈ A{Y }, we can find h ∈ A{Y },
such that

h << f ∧ ∃p, q : αprs
qg = h (mod[f ]).
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Proof. By lemma 1.4.6 there exists h1 ∈ A{Y } of order at most n and
there exists q such that sqg = h1 (mod[f ]). By the division algorithm for
polynomials we obtain that αprh1 = h (mod[f ]), for some p and h ∈ A{Y } of
degree lower than r.

�

Now we are ready to prove Ritt-Raudenbush basis theorem.

Theorem 1.4.1 (Ritt-Raudenbusch Basis Theorem). Let A be a Ritt
algebra such that every radical differential ideal I is finitely generated. Then
every radical differential ideal in A{Y } is finitely generated.

Proof. Let us denote by S the set of all non-finitely generated radical dif-
ferential ideals in A{Y }. By Kuratowski-Zorn lemma there exists a maximal
element in S. Let us denote it by M .

STEP 1: We will prove that M is prime. We suppose that it is not,
i.e. there exist a, b ∈ A such that ab ∈ M,a /∈ M and b /∈ M . Since M
is maximal, then {a,M} and {b,M} are finitely generated, i.e. there exist
x1, . . . , xp, y1, . . . yq ∈ M such that {a,M} = {a, x1, . . . , xp} and {b,M} =
{b, y1, . . . yq}. By lemma 1.4.3 {a,M}{b,M} ⊂ {ab, x1y1, . . . , xpyq} ⊂M .

If c ∈M , then c2 ∈ {a,M}{b,M}. Hence c2 ∈ {ab, x1y1, . . . , xpyq}. Since
{ab, x1y1, . . . , xpyq} is radical, then c ∈ {ab, x1y1, . . . , xpyq}. Thus M =
{ab, x1y1, . . . , xpyq}. We have a contradiction with the assumption that M
is non-finitely generated.

STEP 2: The ideal M ∩ A is finitely generated in A. Let us denote by
I the finitely generated differential ideal in A{Y } generated by M ∩ A. We
denote by f the polynomial of lowest rank in M − I. Suppose that f is of
the form f(Y ) = a(Y (n))r + g(Y ), where g << f . We observe that a /∈ M .
Otherwise g ∈M and we have a contradiction with the minimality of f .

Let us denote by s the separant of f . We observe that s /∈M . Indeed, if
s ∈M , then s ∈ I (since s << f). Hence f(Y )− 1

r
Y (n)s ∈M−I and we have

a contradiction with the minimality of f . Since M is prime, then as /∈ M .
Hence {as,M} is finitely generated. Suppose {as,M} = {as, z1, . . . , zk}, for
some z1, . . . , zk ∈M .

Let g(Y ) ∈ M . By lemma 1.4.7, we can find p and q such that apsqg =
h (mod[f ]), where h << f . Since f is minimal in M − I, then h ∈ I. Hence
apsqg ∈ {I, f} and since {I, f} is radical, asg ∈ {I, f}. So asM ⊂ {I, f}. We
obtain that M ⊆ M{as,M} = M{as, z1, . . . , zk}. By lemma 1.4.3 we have
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that M{as, z1, . . . , zk} ⊆ {asM,Mz1, . . . ,Mzk} ⊆ {I, f, z1, . . . , zk} ⊆ M .
We obtain that M = {I, f, z1, . . . , zk}, so M is finitely generated.

�

Inductively we obtain the result above for the differential ringA{Y1, . . . , Yn}.
In particular, if K is a differential field of characteristic zero and I is a radical
differential ideal in K{Y1, . . . , Yn}, then there exist f1, . . . , fs ∈ I such that
I = rad([f1, . . . , fs]), i.e. the ideal I has a finite basis.

Proposition 1.4.1. Let K be a differential field of characteristic zero and
let A be a finitely differentially generated K-algebra. Then there exist n ∈ N
and a differential ideal I of K{Y1, . . . , Yn} such that

ϕ : K{Y1, . . . , Yn}/I → A

is a differential isomorphism.

Proof. A is a finitely differentially generated K-algebra, so there exists
a finite subset S = {s1, . . . , sn} of A such that A = K{S}. We consider a

differential ring homomorphism ψ : K[Y
(j)
i ] → A such that ψ|K = idK and

ψ(Y
(j)
i ) = s

(j)
i . Since A = K{s1, . . . , sn}, then Im(ψ) = A. So ψ induces a

differential isomorphism ϕ such that I = Ker(ϕ).

�

Corollary 1.4.2. Let K be a differential field of characteristic zero and let
A be finitely differentially generated K-algebra. Let I be a radical differential
ideal of A. Then there exist f1, . . . fs ∈ I such that I = rad([f1, . . . , fs]).

1.5 Decomposition of radical differential ide-

als

In this section we present Ritt theorem concerning decomposition of a
radical differential ideal into a finite intersection of prime differential ideals.

Theorem 1.5.1. Let A be a differential ring, such that A has ACC for
radical differential ideals. Then every radical differential ideal in A is an
intersection of a finite number prime differential ideals.
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Proof. We suppose the contrary. Let us denote by S the set of radical
differential ideals in A{Y } which are not an intersection of finitely many
prime differential ideals. By Kuratowski-Zorn lemma there exists a maximal
element in S. We denote this ideal by M . Since M is not prime, then there
exist a, b ∈ A such that ab ∈ M and a, b /∈ M . Hence {a,M} and {b,M}
are larger that M , and hence they are intersections of finitely many prime
differential ideals. By lemma 1.4.3 {a,M}{b,M} ⊆ {ab,M} ⊂M .

If c ∈ {a,M} ∩ {b,M}, then c2 ∈ M and since M is radical, c ∈ M .
We obtain that M = {a,M} ∩ {b,M}. So M is the intersection of a finite
number of prime differential ideals.

�

Corollary 1.5.1. Let K be a differential field of characteristic zero and let
A be a finitely differentially generated K-algebra. Let I be a proper radical
differential ideal of A. Then there exist finitely many prime differential ideals
P1, . . . , Ps of A such that

I = P1 ∩ . . . ∩ Ps.

Moreover, when Pi * Pj for all i 6= j, i, j ∈ {1, . . . , s}, then the set
{P1, . . . , Ps} is unique.

As a consequence of the decomposition theorem we obtain the following
result:

Proposition 1.5.1. Let A be a Ritt algebra and let P be a proper maximal
differential ideal of A. Then P is prime.

Proof. Since A is a Keigher ring, rad(P ) is a differential ideal. This means
that P is radical, because P is a maximal differential ideal. By theorem 1.5.1
P is an intersection of prime differential ideals containing it. Due to the
maximality of P , we obtain that P is prime.

�

1.6 Taylor morphism

Let B be a commutative ring with unity. We denote by B[[X]] the ring of
power series in one variable X over B. It is a differential ring with derivation
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given by (∑
n≥0

anX
n
)′

=
∑
n≥1

nanX
n−1.

This means that we have X ′ = 1 and a′ = 0, ∀a ∈ B. The ring of constants
of B[[X]] is clearly B.

Definition 1.6.1. Let A be a differential ring and let B be a Ritt algebra.
Let σ : A → B be a ring homomorphism (not necessary differential). The
mapping

Tσ : A→ B[[X]], a 7→
∑
n≥0

σ(a(n))

n!
Xn,

is called the Taylor morphism associated to σ.

Notation. Let I be an ideal of a differential ring A. Let

I] = {a ∈ I | ∀n ∈ N : a(n) ∈ I}.

It is the largest differential ideal of A contained in I.

Proposition 1.6.1. Let A, B, σ and Tσ be as above. Let CA denote the
subring of constants in A and let A0 be a differential subring of A. Then:

1. Tσ is a differential homomorphism and ker(Tσ) =
(
ker(σ)

)]
,

2. Tσ is an A0-algebra homomorphism if and only if ∀a ∈ A0 : σ(a′) = 0.
In particular it is a CA-algebra homomorphism.

3. If B is a reduced ring, then ker(Tσ) is a radical ideal,

4. If B has no zero divisors, then ker(Tσ) is a prime ideal.

5. If A is a field, then Tσ(A) is a field.

Proof. (1) Let u, v ∈ A. A straightforward computation give us that
Tσ(u + v) = Tσ(u) + Tσ(v) and also Tσ(u′) = [Tσ(u)]′. To obtain multiplica-
tivity we use the Leibniz rule (uv)(n) =

∑n
i=1

(
n
i

)
uivn−i. Now

Tσ(u) = 0⇔
∑
n≥0

σ(u(n))

n!
Xn = 0⇔ ∀n ≥ 0 σ(u(n)) = 0⇔ u ∈ (ker(σ))].
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(2) If Tσ is an A0-algebra homomorphism, i.e. Tσ(a) = σ(a), for all a ∈ A0,

then we compare the coefficients of Tσ(a) =
∑

n≥0
σ(a(n))
n!

Xn with σ(a) to
obtain that ∀a ∈ A0 : σ(a′) = 0.

Now let us assume that σ(a′) = 0 for all a ∈ A0. Then ∀a ∈ A0∀n ≥ 1 :
σ(a(n)) = 0. So Tσ(a) = σ(a).
(3) If B is reduced, so is B[[X]]. Hence

a ∈ rad[ker(Tσ)]⇔ ∃n : Tσ(an) = 0⇔ [Tσ(a)]n = 0⇒ Tσ(a) = 0⇔ a ∈ ker(Tσ).

(4) If B is an integral domain, so is B[[X]]. Hence

uv ∈ ker(Tσ)⇔ Tσ(uv) = Tσ(u)Tσ(v) = 0⇒ u ∈ ker(Tσ) ∨ v ∈ ker(Tσ).

(5) If a, b ∈ A are elements such that ab = 1, then Tσ(ab) = Tσ(a)Tσ(b) = 1.
Hence every nonzero element in Tσ(A) is invertible.

�

Remark 1.6.1. If I is a proper radical (resp. prime) ideal of a Ritt algebra
A, then I] is also a radical (resp. prime) ideal.

Proof. This follows from the previous theorem (3) and (4).

�

1.7 The primitive element theorem

Let us recall the primitive element theorem. It says that if K ⊂ L is a
finite separable field extension, then there exists an element θ ∈ L, such that
L = K(θ). Below we present the differential version of the primitive element
theorem. We will use this result in the proof of the embedding theorem in
section 4.2.

Theorem 1.7.1 (Primitive element theorem). Let F be a differential
field of characteristic 0, such that CF  F . Let u and v be elements differen-
tially algebraic over F . Then there exist α ∈ F such that F 〈u, v〉 = F 〈u+αv〉.
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The proof needs the following lemma (see [29], chapter 2, §22, pp.35-36).

Lemma 1.7.1. Let F be a differential field of characteristic zero, with field
of constants CF ( F . Let f ∈ F{Y1, . . . , Yn} be nonzero. Then there exist
y1, . . . , yn ∈ F such that f(y1, . . . , yn) 6= 0.

Proof of lemma. It is sufficient to prove the lemma in case n = 1. Let
α ∈ F \ CF and k ∈ Z+. We will prove that if ord(f) ≤ k then there exists
an element

y∗ = a0 + a1α + . . .+ akα
k, (1.2)

where ai ∈ CF for i = 0, 1, . . . , k, such that f(y∗) 6= 0.
We suppose the contrary, i.e. we consider g ∈ F{Y }, g 6= 0 of the lowest

rank such that g vanishes on any element of the form 1.2. We denote by l
the order of g. We observe that 0 < l ≤ k. Now if we substitute Y in g
by y∗ (respectively Y (i) by Diy∗ = a1α

(i) + . . . + ak(α
k)(i) for i = 1, . . . , l),

we obtain zero. So if we treat this expression as a polynomial in variables
a0, . . . , ak it must be identically equal to zero. Hence its partial derivatives
∂g
∂a0
, . . . , ∂g

∂ak
are also zero. We compute them to obtain the following system

of equations:



∂g
∂Y
|Y=y∗ = 0

∂g
∂Y
|Y=y∗α + ∂g

∂Y ′
|Y=y∗α

′ + . . .+ ∂g
∂Y (l) |Y=y∗α

(l) = 0
∂g
∂Y
|Y=y∗α

2 + ∂g
∂Y ′
|Y=y∗(α

2)′ + . . .+ ∂g
∂Y (l) |Y=y∗(α

2)(l) = 0
. . .
∂g
∂Y
|Y=y∗α

l + ∂g
∂Y ′
|Y=y∗(α

l)′ + . . .+ ∂g
∂Y (l) |Y=y∗(α

l)(l) = 0

(1.3)

Now we consider 1.3 as a system in the indeterminates ∂g
∂Y (i) for i = 0, 1, . . . , l.

Since ∂g
∂Y (l) is of lower rank than g, hence ∂g

∂Y (l) (y∗) 6= 0. Hence ∂g
∂Y (l) treated

as a polynomial in the indeterminates ai does not vanish identically. Hence
the determinant of system 1.3 is equal to zero. Equivalently the elements
1, α, α2, . . . , αl are lineary dependent, i.e. there exists β0, . . . , βl ∈ CF not all
equal to zero such that β0 + β1α + . . . + βlα

l = 0. We pick up an algebraic
polynomial h of lowest degree such that h(α) = 0. Hence h′(α)α′ = 0.
Since h′(α) 6= 0, then α′ = 0. We have a contradiction with the assumption
α ∈ F \ CF .

�
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Now we will prove the primitive element theorem. We follow the proof of
Seidenberg (see [33], §3.). The previous method of proving this theorem can
be found in a paper by E. Kolchin (see [20], §4.)

Proof of the theorem. We construct a differential field F 〈X〉〈u, v〉, where
X is a differential indeterminate. The elements u, v are differentially alge-
braic over F , so also over F 〈X〉. The sum and the product of differentially
algebraic elements are also differentially algebraic elements. So w := u+Xv
is differentially algebraic over F 〈X〉. Let f ∈ F 〈X〉{Y } be the minimal
polynomial of w. We denote by k the order of f . We have a polynomial
relation

f(X,X ′, . . . X(l), w, w′, . . . , w(k)) = 0. (1.4)

We observe that

∂w(i)

∂X(k)
=

{
0 for i < k
v for i = k

(1.5)

We compute the partial derivative of 1.4 with respect to X(k) and we
obtain that ∂f

∂X(k) + ∂f
∂w(k) ·v = 0. Since f is minimal, then g(X,w) := ∂f

∂w(k) 6= 0.
Hence v ∈ F 〈X〉〈w〉.

By lemma 1.7.1, we can find x ∈ F 〈u, v〉, such that g(x, u + xv) 6= 0. In
fact we can take x ∈ F . Indeed, by analysing the proof of the lemma 1.7.1,
we observe that we can specialize X to a polynomial in the indeterminate
λ ∈ F \ CF with constant coefficients. So we choose such an x ∈ F . Hence
v ∈ F 〈u+ xv〉 and F 〈u+ xv〉 = F 〈u, v〉.

�
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Chapter 2

Real algebra

In this chapter we briefly review Artin-Schreier theory of ordered fields
and real fields. We refer to [2] for more results on real algebra. We also
comment on completeness of real closed field theory.

2.1 Ordered fields, real fields and real closed

fields

We recall some definitions and facts of real algebra.

Definition 2.1.1. Let K be a field. An ordering of K is a total order relation
≤, which satisfies the following conditions

x ≤ y ⇒ x+ z ≤ y + z,

0 ≤ x, 0 ≤ y ⇒ 0 ≤ xy,

for all x, y, z ∈ K.
A field K endowed with an ordering is called an ordered field.

If K is an ordered field, we can extend the ordering from K to the ring
of polynomials K[Y ]. If f ∈ K[Y ] and

f(Y ) = anY
n + an−1Y

n−1 + . . .+ akY
k, with ak 6= 0,

then f(Y ) > 0 if and only if ak > 0. Now we can extend the ordering to the
field of rational functions K(Y ) by defining for f(Y ), g(Y ) ∈ K[Y ]

f(Y )

g(Y )
> 0⇔ f(Y )g(Y ) > 0.
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Definition 2.1.2. Let K be a field. A subset S ⊂ K is called a cone of K if

x, y ∈ S ⇒ x+ y ∈ S,

x, y ∈ S ⇒ xy ∈ S,

x ∈ K ⇒ x2 ∈ S.

The cone S is proper if −1 /∈ S.

Theorem 2.1.1. Let K be a field. The following properties are equivalent:

1. K can be ordered,

2. K has a proper cone,

3. −1 /∈
∑
K2,

4. ∀x1, . . . , xn ∈ K
∑n

i=1 x
2
i = 0⇒ x1 = . . . = xn = 0.

Definition 2.1.3. A field K is called a real field if it satisfies one of the
equivalent properties in theorem 2.1.1.

Remark 2.1.1. Note that a real field always has characteristic zero.

A ring A is said to be semireal if −1 is not a sum of squares in A. It is
called real when

∑n
i=1 x

2
i = 0 implies x1 = . . . = xn = 0 for all n ∈ N and for

all x1, . . . , xn ∈ A. A real ring is semireal. An ideal I of A is real (semireal)
if the quotient ring A/I is real (semireal). This means that an ideal I of A
is real if and only if ∀a1, . . . an ∈ A :

∑n
i=1 a

2
i ∈ I ⇒ ai ∈ I, for i = 1, . . . , n.

Real ideals are semireal. As already mentioned, for fields these two notions
coincide.

Definition 2.1.4. A real field K which has no nontrivial real algebraic ex-
tensions is called a real closed field.

Theorem 2.1.2. Let K be a field. Then the following properties are equiv-
alent:

1. K is a real closed field,

2. the ring K[i] := K[X]/(X2 + 1) is an algebraically closed field.
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For the proof see [2], chapter 1.

Definition 2.1.5. Let K be an ordered field. An algebraic extension L of
K is called a real closure of K if L is real closed and the inclusion K ↪→ L
preserves the ordering of K.

Theorem 2.1.3. Every ordered field K has a real closure which is unique
up to K-isomorphism.

For the proof see [2], chapter 1.

Remark 2.1.2. If F is a real field and K its real closure, then the only F-
automorphism of K is the identity. In this sense uniqueness of real closure is
stronger than uniqueness of algebraic closure. We will denote the real closure
of an ordered field F by F

r
.

Examples:

1) Q and R with their natural orderings are clearly real fields. Moreover
R is a real closed field.

2) The field of rational functions R(X) is a real field (see above how it
can be ordered).

3) Ralg := {x ∈ R : x is algebraic overQ} is a real closed field. It is called
field of real algebraic numbers. It is a real closure of Q, i.e. Qr

= Ralg.
4) R(X)∧ := {

∑∞
i=k aiX

i
n : k ∈ Z, n ∈ N \ {0}, ai ∈ R} is called field

of Puiseux power series with coeffficients in R. Analogously by C(X)∧ we
denote the field of Puiseux power series with coeffficients in C. C(X)∧ is
an algebraically closed field. Since C(X)∧ = R(X)∧[i], then R(X)∧ is real
closed.

5) The set R(X)∧alg of Puiseux series algebraic over R(X) forms a field. It
is a real closure of R(X) with ordering ≤, such that ∀x ∈ (−∞, 0] : x < X
and ∀x ∈ (0,+∞) : X < x. For the details see [2], chapter 1, example 1.1.2.

Lemma 2.1.1. Let I be a real ideal of a commutative ring A. Then I is
radical. If A is noetherian, then all minimal prime ideals containing I are
real.

For the proof see [2], lemma 4.1.5.
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Lemma 2.1.2. Let I be a prime ideal of a commutative ring A. Then I is
real if and only if Fr(A/I) is a real field.

Proof. Fr(A/I) is real if and only if ∀x1 . . . , xn ∈ Fr(A/I)
∑n

i=1 x
2
i =

0 ⇒ x1 = . . . = xn = 0 (see theorem 2.1.1). This means
∑n

i=1 x
2
i ∈ I ⇒

x1, . . . , xn ∈ I.

�

2.2 The Tarski-Seidenberg principle

The theory of real closed fields admits quantifier elimination. We have
a Tarski-Seidenberg principle, which states that semialgebraic sets in Kn,
where K is a real closed field, are stable under projection. Let us recall this
theorem.

Definition 2.2.1. Let K be a real closed field. A subset S ⊂ Kn is a semi-
algebraic subset of Kn if it has the form

p⋃
i=1

g⋂
j=1

Aij,

where Aij = {x ∈ Kn : f(x) > 0} or Aij = {x ∈ Kn : f(x) = 0} (or Aij =
{x ∈ Kn : f(x) < 0}) for i = 1, . . . p, j = 1, . . . q, where f ∈ K[X1, . . . , Xn].

An algebraic set is semi-algebraic. Semi-algebraic subsets of K are exactly
the finite unions of intervals. The closure and the interior of a semi-algebraic
set are semi-algebraic.

The Tarski-Seidenberg Principle states that if K is a real closed field, A
is a semialgebraic subset of Kn+m and π : Kn × Km → Kn is the natural
projection (we just forget last m coordinates), then π(A) is a semialgebraic
subset of Kn (see [2], chapter 1.4. and chapter 2.2).

For our purposes the following corollary of Tarski-Seidenberg Principle
will be useful.
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Theorem 2.2.1 (Transfer Principle). Let F be a real closed field and K a
real closed extension of F . We consider a boolean combination β(X1, . . . , Xn)
of polynomial equations and inequalities with coefficients in F . If there ex-
ists u = (u1, . . . , un) ∈ Kn such that β(u) is true, then there exists x =
(x1, . . . , xn) ∈ F n such that β(x) holds true.

For the proof see [2], chapter 4.1.

We can formulate Tarski-Seidenberg Principle in the language of model
theory. If F is a real closed field, then semialgebraic sets in F n are sets of the
form {x ∈ F n : Ψ(t, x)}, where Ψ(T,X) is a first-order formula in the vari-
ables T1, . . . , Tk, X1, . . . , Xn and t = (t1, . . . , tk) are parameters from F . The
principle states that the language of real closed fields admits elimination of
quantifiers, i.e. every first-order formula in the language of real closed fields
is equivalent to a quantifier-free formula (see for example [25]).

A consequence of this result is a theorem analogous to the Principle of
Lefschetz. Let us recall that this principle roughly says that it is enough
to prove some result over the complex numbers (where we can make use of
analytic and topological properties) and then we automatically get the same
result for all algebraically closed fields of characteristic zero. Now we are able
to formulate a similar principle for real closed fields. Namely, any formula
of first-order language which holds true in one real closed field (for example
R) is also true in all real closed fields. So the problem always reduces to
answering the questions if the statement of our result can be described in
first-order language and if it holds true for some real closed field (for more
detail see [30] and [31]). For our purposes we can formulate the following
corollary based on this argumentation.

Corollary 2.2.1. Let F be a real field and let fi, gj ∈ F [X1, . . . , Xn], for
i = 1, . . . , k and j = 1, . . . , l. The polynomial system{

fi(X1, . . . , Xn) = 0, i = 1, . . . , k
gj(X1, . . . , Xn) > 0, j = 1, . . . , l,

has a solution in some real extension of F if and only if it has a solution in
all real closed fields containing F.

We present one more important result proved in 1927 by E. Artin and O.
Schreier.
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Theorem 2.2.2 (Artin-Schreier Theorem). Let K be a field of arbitrary
characteristic. Let K denote its algebraic closure. If K 6= K and [K : K] <
∞ then K is a real closed field and K = K(i), where i =

√
−1.

In other words, if L is an algebraically closed field and K a subfield of L
such that 1 < [L : K] <∞, then char(K) = 0 and L = K(i). For the proof
see [17], chapter 1.

2.3 Some auxiliary results

In this section we present some needed facts concerning real closed field
theory. It is a complete theory, i.e. for every sentence p described in the
language of real closed field theory one can prove p or else negation of p.

Theorem 2.3.1 (Skolem-Löwenheim Theorem). If T is a theory (not
necessarilly complete) such that it has an infinite model or finite models of
arbitrary large (finite) cardinality, then for every cardinal number ℵ no less
than the cardinality of T , the theory T has a model of cardinality ℵ.

For the proof of this theorem and for informations concerning needed
model theory notions see [27].

For our purposes the following consequence of this theorem will be useful.

Corollary 2.3.1. Let M be an infinite model of the complete theory T in
language L. Then for every cardinal number ℵ not less than card(M) and
not less than card(L), M has an elementary extension of cardinality ℵ.

The theory of real closed fields is complete, so this kind of choice of the
real closed field is possible. By elementary extension we understand such a
field extension F ⊂ M that every tuple of F satisfies the same formulas in
F as in the M . In other words one can choose a real closed field extension
of arbitrary large cardinality.

In particular if we are interested only in field extensions, one can observe
that every purely transcendental extension of a given field F is F -isomorphic
to a field of rational functions over F of appropriate number of indetermi-
nates. In this case if we need an extension F ⊂ M of real closed fields with
a given transcendence degree say ℵ, we can define the field M as the real
closure of the field of rational functions over F , i.e. M = F (X)

r
, where

X = {Xi}i∈I for card(I) = ℵ.
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Chapter 3

Picard-Vessiot theory

3.1 Basic definitions and facts

For a given fieldK and for an arbitrary polynomial f ∈ K[Y ] we construct
a splitting field, i.e. a minimal field L containing K over which f factors into
linear factors. Similarly we can associate to a homogeneous linear differential
equation of order n defined over the differential field K a minimal extension
L of K containing a fundamental set of solutions of this equation (i.e. a set
of n solutions linearly independent over CL.).

We shall consider homogeneous linear differential equations defined over
a differential field K of the form

L(Y ) := Y (n) + an−1Y
(n−1) + . . .+ a1Y

′ + a0Y = 0, (3.1)

where ai ∈ K for i ∈ {0, 1, . . . , n− 1}.
If L is a differential field extension of K, then the set of solutions of

L(Y ) = 0 in L is a CL-vector space of dimension ≤ n.
We can define a Picard-Vessiot extension for equation (3.1) over a dif-

ferential field K. When K is a field of characteristic zero with algebraically
closed field of constants CK , then it can be proved that we can always as-
sociate to this equation a minimal extension of K containing a fundamental
set of solutions of (3.1). In the case described above this extension is unique
up to differential K-isomorphism.

Definition 3.1.1. A differential field extension K ⊂ L is a Picard-Vessiot
extension for L if
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1. L is differentially generated over K by a fundamental system of solu-
tions of L(Y ) = 0 in L,

2. every constant of L lies in K,i.e. CK = CL.

Theorem 3.1.1. Let K be a differential field of characteristic zero with
algebraically closed field of constants CK. Let equation (3.1) be defined over
K. Then there exists a Picard-Vessiot extension L of K for L and it is
unique up to differential K-isomorphism.

For the proof see [8], chapter 3.

Let us recall how we obtain a Picard-Vessiot extension for L over K in
the case in which CK is an algebraically closed field. First we construct the
full universal solution algebra.

We consider the ring K[Yij], where 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n. It is
a polynomial ring in n2 indeterminates. We extend the derivation of K to
K[Yij] by defining

Y ′ij = Yi+1,j for 0 ≤ i ≤ n− 2,

Y ′n−1,j = −an−1Yn−1,j − . . .− a1Y1j − a0Y0j.

Notice that in this way we assure that Y0j, 1 ≤ j ≤ n are solutions of the
considered equation.

We denote W = det(Yij). We have

W = det


Y01 . . . Y0n

Y11 . . . Y1n

. . . . . . . . .
Yn−1,1 . . . Yn−1,n

 = det


Y01 . . . Y0n

Y ,
01 . . . Y ,

0n

. . . . . . . . .

Y
(n−1)

01 . . . Y
(n−1)

0n

 .

SoW is the wronskian (determinant) of Y01, . . . , Y0n. The elements Y01, . . . , Y0n

are linearly independent over CK if and only if W is nonzero. Let W =
{W n}n≥0 be the multiplicative system of the powers of W . Let R := K[Yij]W
be the localization of K[Yij] in W . The derivation of K[Yij] extends to R
in a unique way (see section 1.1). This differential ring R is called the full
universal solution algebra. In this way we assure that Y0j, 1 ≤ j ≤ n form a
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fundamental set of solutions.

Then we consider a maximal differential ideal M of R, i.e. a maximal
element in the set of all proper differential ideals of R, which is proved to be
prime (see proposition 1.5.1). Then one can prove that the field of fractions
of the integral domain R/M i.e. L = Fr(R/M) fulfills the conditions to be
a Picard-Vessiot extension for L over K.

The quotient ring R/M is simple, i.e. it has no proper differential ideals.
It is proved that if R has no proper differential ideals, then CK = CL.

Theorem 3.1.2. Let K be a differential field, with field of constants CK.
Let K ⊂ R be a differential ring extension such that R is finitely generated
as a K-algebra and has no zero divisors. Let us denote L = Fr(R). If CK is
algebraically closed and R has no proper differential ideals, then CL = CK.

For the proof see [8], Proposition 3.5 or [7], Theorem 5.6.4.

The idea behind the proof is the following: every new constant c ∈ CL\CK
must be algebraic over K (but then it is algebraic over CK and since CK is
algebraically closed, this means that c ∈ CK) or else there exist an element
a ∈ CK such that c− a is not invertible in R (and then it generates a proper
differential ideal). For details see [8], chapter 3.2. or [7], chapter 5.6.

3.2 Fundamental theorem of Picard-Vessiot

theory

Let us now present the analogous of the fundamental theorem of polyno-
mial Galois theory. If we have a polynomial f ∈ K[Y ] in one variable Y with
coefficients in a field K, we construct a splitting field L by adjoining to K
all roots of the polynomial f . In Galois theory for polynomial equations we
introduce the Galois group of a field extension K ⊂ L. It is the group of all
K-automorphisms of L. If L is a splitting field of a polynomial f ∈ K[Y ],
the Galois group of K ⊂ L is the group of all permutations of the roots of f
which preserve all algebraic relations between them.

In differential Galois theory we introduce the so called differential Galois
group. It consists in all differential K-automorphisms of the Picard-Vessiot
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extension. They preserve the relations between solutions of the given equa-
tion and also between their derivatives.

Definition 3.2.1. Let K ⊂ L be an extension of differential fields. The
group

G(L|K) = {σ : L→ L |σ is a differential K-automorphism},

is called the differential Galois group of the extension K ⊂ L.

If necessary we denote this group by Gdiff (L|K) to distinguish it from
the Galois group defined in polynomial Galois theory.

When K ⊂ L is a Picard-Vessiot extension of equation (3.1), the Galois
group G(L|K) is denoted by GalK(L) or Gal(L) and it is called Galois group
of the equation (3.1) over K.

Remark 3.2.1. If K is a differential field and K ⊂ L is a separable algebraic
field extension then the derivation of K extends uniquely to L and moreover
every K-automorphism of L is a differential one.

For the proof see [8], proposition 2.3.

In other words, in the case of algebraic separable extensions Galois group
and differential Galois group coincide.

Let us recall that an algebraic extension is Galois if and only if it is normal
and separable. Moreover if K is a field of characteristic zero, then every
element algebraic over K is separable over K. For Picard-Vessiot extensions
we have the following characterization.

Theorem 3.2.1. Let K be a differential field of characteristic zero with
algebraically closed field of constants. If L is an algebraic Picard-Vessiot
extension of K, then it is a normal algebraic extension.

For the proof see [8], corollary 3.3.

Theorem 3.2.2. Let K be a differential field of characteristic zero with
algebraically closed field of constants. Let L ⊂ K be a finite Galois extension.
Then L is a Picard-Vessiot extension of K.
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For the proof see [22], proposition 3.20.

The differential Galois group of a Picard-Vessiot extension is a linear
algebraic group, i.e. it is isomorphic to a subgroup of the general linear group
GLn(CK), closed in Zariski topology, where n is the order of the differential
equation. For the details see for example [8], chapter 4. Moreover

dimG(L|K) = trdeg(L|K).

Here we understand the dimension of G(L|K) as its dimension as an alge-
braic variety.

Let K ⊂ L be a Picard-Vessiot extension for equation (3.1) and let M
be a differential subfield of L such that K ⊂ M ⊂ L. Then M ⊂ L is a
Picard-Vessiot extension for L, viewed as defined over M , with

G(L|M) = {σ ∈ G(L|K) : σ|M = idM}.

Let H be a subgroup of G(L|K). We denote by

LH := {x ∈ L | ∀σ ∈ H : σ(x) = x}

the subfield of L fixed by the action of H. LH is stable under the derivation
of L.

Definition 3.2.2. We say that the differential field extension K ⊂ L is
normal if

∀x ∈ L \K ∃σ ∈ G(L|K) : σ(x) 6= x.

Now we can state the fundamental theorem of Picard-Vessiot theory.

Theorem 3.2.3 (Fundamental Theorem). Let K be a differential field of
characteristic zero with algebraically closed field of constants. Let K ⊂ L be
a Picard-Vessiot extension with differential Galois group G(L|K).

1. Then there is a bijective correspondence between Zariski closed sub-
groups H of G(L|K) and intermediate differential fields M such that
K ⊂M ⊂ L, given by

H → LH , M → G(L|M).
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2. The differential field extension K ⊂ M is a Picard-Vessiot extension
if and only if G(L|M) is a normal subgroup of G(L|K). Then the
restriction morphism

G(L|K)→ G(M |K), σ 7→ σ|M

induces an isomorphism G(L|K)/G(L|M) ∼= G(M |K).

For the proof see [8], chapter 5.
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Chapter 4

Picard-Vessiot extensions for
real fields

4.1 Motivation

Example 1:
Let us analyse the example given by A. Seidenberg mentioned in the in-
troduction (see [32] or [18], chapter 6, ex.1). We consider the field of real
numbers R with trivial derivation, i.e. ∀a ∈ R : a′ = 0. To R we adjoin the
general solution a of the equation

4a2 + a′2 = −1, (4.1)

such that a′ 6= 0. Now we take K = R〈a〉 = R(a, a′) to be a base field over
which we consider the homogeneous linear differential equation

y′′ + y = 0. (4.2)

It can be proved that the field of constants of K is R. Moreover, if ξ is a
nontrivial solution of equation (4.2), then v = ξ′

ξ
is a solution of the Riccati

equation
v′ = −1− v2. (4.3)

It can be also proved that if v is any solution of equation (4.3), then L = K〈v〉
contains a new constant, i.e. R  CL.

In Seidenberg’s example (4.1) shows that the base field K is not a real
field. So it seems to be reasonable to consider homogeneous linear differential
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equations defined over a real field K.

We shall consider the existence of Picard-Vessiot extensions for real dif-
ferential fields. To understand how delicate is the problem let us analyse two
more examples.

Example 2: A real field is a field which can be ordered (see chapter
4). We have several possible orderings for a given real field. For example, in
the field Q(

√
2), either

√
2 or −

√
2 can be taken to be positive. So we can

consider two different real closures of the field Q(
√

2). In one of them the
element

√
2 has a square root, in the second one it does not.

Here we present a modification of the example given by H. Umemura (see
[37]). Instead of the field or rational numbers we consider the field of real
numbers.

Example 3: Let us consider a differential field extension R(x, e3x) ⊂
R(x, ex) with derivation d

dx
. It is an algebraic extension which is not normal.

So it is not Galois. But as it can be easily seen it is a real Picard-Vessiot
extension. Indeed, the function y = ex satisfies the homogeneous linear dif-
ferential equation y′−y = 0. By real Picard-Vessiot extension we understand
a Picard-Vessiot extension which is an extension of real fields.

Let us recall that in Picard-Vessiot theory over differential fields of char-
acteristic zero with algebraically closed field of constants when we are dealing
with finite algebraic extensions a Picard-Vessiot extension appears to be the
same as a Galois extension (see theorem 3.2.1 and theorem 3.2.2.). In par-
ticular an algebraic Picard-Vessiot extension is a normal algebraic extension
if CK is algebraically closed.

As one can conclude by analysing the example given above, in case of real
differential field extensions this fact is no longer true.

Our last example explains the condition concerning the field of constants
of a given differential field, which appears in the existence theorem (see the-
orem 4.3.1).

Example 4: Let us consider the field Qr
with the trivial derivation

and a real differential extension K = Qr〈eαX〉 of Qr
, where α ∈ R \ Qr

.
We consider K as a subfield of R((X)). The derivation of R((X)) is given
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by (
∑

n≥0 anX
n)′ =

∑
n≥1 nanX

n−1 and extension to the fraction field. So

(eαX)′ = αeαX . Hence α ∈ K and it is a new constant.

4.2 The Seidenberg-Singer embedding theo-

rem

Now we will state and prove an embedding theorem which will be crucial
in the proof of the existence of a Picard-Vessiot extension for a differential
equation defined over a real field K differentially finitely generated over a
real closed field F considered as a differential field with trivial derivation,
with field of constants equal to F .

We will need some auxiliary lemmas. Here we prove a certain version of
results of A. Seidenberg presented in [31], which were also explained by M.
F. Singer in [35].

Lemma 4.2.1. Let F be an arbitrary field of characteristic zero considered
as a differential field with trivial derivation and let K = F 〈y1, . . . , yn〉 be a
differential extension of F , with derivation D. Let L be an arbitrary field
of characteristic zero. We denote by L[[X]] the ring of formal power series,
which can be seen as a differential ring with derivation DL, where

DL

(∑
j≥0

aj
Xj

j!

)
=
∑
j≥1

aj
Xj−1

(j − 1)!
.

Let σ : K → L be an abstract field isomorphism (i.e. not necessary differen-
tial) and let σ(Djyi) = cij ∈ L. We consider F as a subfield of L via σ. Then
the Taylor morphism Tσ : K → L[[X]] associated to σ given by Tσ(yi) = ȳi =∑

j cij
Xj

j!
defines a differential isomorphism ϕ : K → F 〈ȳ1, . . . ȳn〉.

Proof. By proposition 1.6.1 we get that the Taylor morphism associated
with σ is a differential homomorphism, such that ker(Tσ) = (ker(σ))]. Since
σ is an isomorphism, then Tσ is a ring monomorphism. So by proposition
1.6.1, (5) we get the differential field isomorphism ϕ : K → Im(Tσ).

�
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Lemma 4.2.2. Let F be a real field and let K be a real extension of F of
the form K = F ({xλ}λ∈Λ, y), where xλ are algebraically independent over F
for card(Λ) ≤ ℵ and y is algebraic over G = F ({xλ}λ∈Λ). Let M be a real
closed extension of F such that trdeg(M |F ) ≥ ℵ. Then K is isomorphic to
a subfield of M .

Proof. STEP 1: We consider the real field G = F ({xλ}λ∈Λ). We will
embed G into M . Since trdeg(M |F ) ≥ ℵ, there exist cλ ∈ M for λ ∈ Λ
algebraically independent over F . We define S := F ({cλ}λ∈Λ). Now G
and S are two purely transcendental extensions of F , whose transcendence
degrees over F are equal. So there exists exactly one isomorphism of fields
ϕ : G→ S such that ϕ|F = id and ϕ(xλ) = cλ for λ ∈ Λ.

STEP 2: We will embed K = G(y) into M . We have already constructed
an isomorphism ϕ : G → S. We can extend it to an isomorphism of the
polynomial rings i.e. ϕ̄ : G[X] → S[X]. Let f ∈ G[X] be the minimal
polynomial of y. We have K ∼= G[X]/(f) ∼= S[X]/(ϕ̄f), so S[X]/(ϕ̄f) is a
real field and ϕ̄f has a root in S

r
. By corollary 2.2.1 it has a root, say y∗, in

M . Then we obtain an isomorphism of fields ψ : K = G(y) → S(y∗) ⊂ M
(see for example [4], chapter 2.1, lemma 2).

�

The existence of the field M postulated in the lemma above is guaranteed
by Skolem-Löwenheim theorem (see theorem 2.3.1). As it was mentioned in
section 2.3, we may define M as a real closure of the field of fractions of the
ring F [X], where X = {Xi}i∈I and card(I) ≥ ℵ.

Remark 4.2.1. We observe that lemma 4.2.2 is also true without assuming
the fields F and K to be real if we take the fields of characteristic zero and
M to be algebraically closed.

The following result is based on the embedding theorem proved by A.
Seidenberg (see [31]) and then in the real case by M. F. Singer (see [35]).

Theorem 4.2.1 (Seidenberg-Singer Embedding Theorem). Let F be
a real closed field considered as a differential field with trivial derivation. Let
(K,D) be a real differential extension of F , differentially finitely generated
over F i.e. K = F 〈y1, . . . , yn〉 with field of constants CK = F . Let M be a
real closed extension of F such that trdeg(M |F ) ≥ c. Then K is isomorphic
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to a subfield K1 = F 〈ȳ1, . . . , ȳn〉 of a ring M [[X]], where ȳi for i = 1, . . . , n
are formal power series and the derivation on K1 is d

dX
.

Proof. By using the primitive element theorem (see theorem 1.7.1) we
may assume that K = F 〈y1, . . . , yn〉, where y1, . . . , yn−1 are differentially
algebraically independent over F and yn is differentially algebraic over G =
F 〈y1, . . . , yn−1〉.

STEP 1: We will embed G into M . We consider G = F (Djyi), where
i ≤ n − 1 and j ∈ N. By lemma 4.2.2, there exists a field isomorphism
σ : G → S := F (cij) ⊂ M , such that σ(Djyi) = cij and cij ∈ M are
algebraically independent over F .

STEP 2: The element yn is differentially algebraic over G. Let f ∈ G{Yn}
be the minimal polynomial of yn. Let ord(f) = r. Then K = G〈yn〉 =
G(yn, Dyn, . . . , D

ryn), i.e. G(yn, Dyn, . . . , D
ryn) is a differential field. To

observe that Dr+1yn is in this field we compute D[f(yn)] = 0 and solve it
with respect to Dr+1yn.

Then yn, Dyn, . . . , D
r−1yn are algebraically independent over G and Dryn

is algebraic over the fieldG1 := G(yn, Dyn, . . . , D
r−1yn). So yn, Dyn, . . . , D

r−1yn
are algebraically independent over the real closed field F . By lemma 4.2.2, we
can embed G1 and also K = G1(Dryn) into M . Again we choose cn0, . . . cn,r−1

such that cij for i ≤ n−1, j ∈ N and cn0, . . . cn,r−1 are algebraically indepen-
dent over F . The element cnr is obtained from the condition σf = 0.

Since the map σ is clearly a field isomorphism, we can apply lemma 4.2.1
and obtain a differential field isomorphism ϕ : K → F 〈y1, . . . , yn〉, where
F 〈y1, . . . , yn〉 is a differential subfield of the differential ring (M [[X]], d

dX
)

and yi is the image of yi in M , 1 ≤ i ≤ n.

�

4.3 Existence theorem

4.3.1 First case

Let K be a real differential field differentially finitely generated over its
field of constants F (i.e. K = F 〈y1 . . . , yn〉, for some n ∈ N). We assume that
F is real closed. We shall consider a homogeneous linear ordinary differential
equation of order k of the form
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L(Y ) := Y (k) + ak−1Y
(k−1) + . . .+ a1Y

′ + a0Y = 0, (4.4)

where ai ∈ K for i ∈ {0, 1, . . . , k − 1}. In this section we prove that there
exists a Picard-Vessiot extension for this equation, which moreover is a real
field.

Theorem 4.3.1. Let F and K be as above. Let M be a real closed extension
of F such that trdeg(M |F ) ≥ c. We consider equation (4.4) defined over K.
Then there exists a Picard-Vessiot extension of K for equation (4.4), which
moreover is a real field.

Proof. Let us denote the complexification of K by K̂ = K(i), where
i2 = −1. Then the field of constant of K̂ is F̂ = F (i), which is algebraically
closed.

We consider equation (4.4) over K̂. The field of constants is algebraically
closed, so there exists a unique Picard-Vessiot extension of K̂ for this equation
(see theorem 3.1.1). Let us denote it by L̂ := K̂〈η1, . . . , ηk〉, where η1, . . . , ηk
is a fundamental set of solutions of equation (4.4).

By Seidenberg-Singer embedding theorem (see theorem 4.2.1), our base
field K is isomorphic to a subfield of the ring of formal power series over M ,
i.e. there exists a differential isomorphism

Tσ : K = F 〈y1, . . . , yn〉 → K1 := F 〈ȳ1, . . . , ȳn〉 ⊂M [[X]],

where ȳi for i = 1, . . . , n are formal power series. If we denote by M̂ =
M(i) the complexification of M , then K̂1 = F̂ 〈y1, . . . , yn〉 is isomorphic to
a subfield of M̂ . L̂ is also differentially finitely generated over K̂, so it is
isomorphic (cf. remark 4.2.1) to an extension of K̂1 in M̂ . By lemma 4.2.1,
we obtain a differential isomorphism

ϕ : L̂ = K̂〈η1, . . . , ηk〉 → L̂1 := K̂1〈η̄1, . . . , η̄k〉 ⊂ M̂ [[X]].

So η̄1, . . . , η̄k is a fundamental set of solutions of equation

Y (k) + bk−1Y
(k−1) + . . .+ b1Y

′ + b0Y = 0, (4.5)

considered over K̂1, where bi := Tσ(ai) ∈ K1 for i = 0, . . . , k − 1.
The conjugation c in M̂ given by i 7→ −i extends clearly to M̂ [[X]]. The

vector space of solutions V := F̂ η1 ⊕ · · · ⊕ F̂ ηk is c-stable. Let V c be the
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F -subspace of V fixed by the conjugation c. Clearly dimF V
c = k. Let L1

be the differential subfield of L̂1 generated by K1 and V c. By definition,
it is differentially generated over K1 by a fundamental system of solutions
of (4.5). As it is a differential subfield of L̂1, CL1 ⊂ CL̂1

= F̂ . But L1

is contained in M [[X]], so it is a real field, hence CL1 = F . So L1 is a
Picard-Vessiot extension for equation (4.5) over K1. Hence L := ϕ−1(L1) is
a Picard-Vessiot extension for equation (4.4) over K, and L is a real field.

�

4.3.2 General case

Let F be a real closed field considered as a differential field with trivial
derivation. Let K be a real differential extension of F of arbitrary differential
degree. We assume that the field of constants is CK = F . We consider the
equation

L(Y ) := Y (k) + ak−1Y
(k−1) + . . .+ a1Y

′ + a0Y = 0, (4.6)

over K. We will prove that we can embed K into a real closed extension
M of F , which is large enough. Then the proof of the existence theorem of
Picard-Vessiot extension for K is the same like in section 4.3.1.

By lemma 4.2.2, we can embed into M all these subfields of K, which
are compositions of differentially transcendental extensions of arbitrary large
differential transcendence degree and a differentially algebraic extension of
finite differential degree. Let us denote the family of all embeddable subfields
of K by S. Let us consider the space E of embeddings of subfields from S.
Clearly E 6= ∅. We introduce a partial order relation ≤ in E by

ϕ1 ≤ ϕ2 ⇔ ϕ1 ⊂ ϕ2,

for ϕ1, ϕ2 ∈ E . We observe that every totally ordered subset G of E has an
upper bound, i.e.

⋃
ϕi∈G ϕi. Hence by Kuratowski-Zorn lemma there exists

a maximal element ϕmax in E . We claim that ϕmax is an embedding of K.
Indeed, if not then there exist a proper subfield S ∈ S such that ϕmax is
an embedding of S. So there exists an element a ∈ K \ S which is not em-
bedded by ϕmax. We consider the differential field S〈a〉. If a is differentially
transcendental over S, then there exists clearly an embedding ψ of S〈a〉 into
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M . If a is differentially algebraic over S, by lemma 4.2.2, there exists an
embedding ψ of S〈a〉 into M . Hence ϕmax < ψ. We have a contradiction
with the maximality of ϕmax.

4.4 Comments concerning construction

of Picard-Vessiot extension

Let K and CK be like in the previous section. Here we give a short com-
mentary on the canonical construction of Picard-Vessiot extension known
from the theory of differential fields with algebraically closed field of con-
stants. This method of construction also holds for our case. Let us follow it
step by step.

Our goal is to construct a real Picard-Vessiot extension for equation (4.4).
The first step is the construction of the full universal solution algebra (see
chapter 3). We consider the ring K[Uij], where 0 ≤ i ≤ k− 1 and 1 ≤ j ≤ k.
It is a polynomial ring in k2 indeterminates. We extend the derivation of K
to K[Uij] (let us denote it by D) by defining

D(Uij) = Ui+1,j for 0 ≤ i ≤ k − 2,

D(Uk−1,j) = −ak−1Uk−1,j − . . .− a1U1j − a0U0j.

We denote V = det(Uij) the wronskian (determinant) of U01, . . . , U0k.
The elements U01, . . . , U0k are linearly independent over CK if and only if V
is nonzero. Let V = {V n}n≥0 be the multiplicative system of the powers of
V . Let R := K[Uij]V be the localization of K[Uij] in V . The differential ring
R is called the full universal solution algebra. It is a real ring, since it is a
localization of a polynomial ring in k2 variables over the real field K.

We consider real differential ideals of the full universal solution algebra
R. The crucial point of our construction is to prove that the maximal real
differential ideal of R, i.e. the maximal element in the set of all proper real
differential ideals of R, is prime. To this end we shall use a theorem of Ritt
(1.5.1).
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Proposition 4.4.1. Let K be a differential field of characteristic zero, R a
noetherian differential K-algebra finitely differentially generated. Let I be a
maximal real differential ideal of R. Then I is prime.

Proof. I is radical, because it is real (see lemma 2.1.1). Then, by theorem
1.5.1, I is an intersection of a finite number of prime differential ideals, i.e.

I = P1 ∩ . . . ∩ Ps. (4.7)

Moreover, we can assume that Pi * Pj for all i 6= j. Indeed, if some
Pi ⊂ Pj for i 6= j, we can omit Pj and reduce the decomposition. Therefore
(4.7) is a primary decomposition of the ideal I with

rad(Pi) = Pi 6= rad(Pj) = Pj ∀ i 6= j.

Hence, by unicity in theorem 1.5.1, it is a reduced primary decomposition (see
[1], chapter 4). So the P ′is are exactly the minimal prime ideals containing
I.
Now, minimal prime ideals containing the real ideal I are as well real (see
lemma 2.1.1). But I is a maximal real differential ideal, so s = 1 and I = P1.
Therefore I is prime.

�

Let us denote by E the set of all proper maximal real differential ideals of
R. By lemma above, elements of E are prime ideals. We divide R by an ideal
chosen from E and obtain a real integral domain. Then we pass to the field
of fractions, which is a real field. Our goal is to obtain a field extension not
adding constants. For this reason not all ideals from E may be appropriate
for our purposes.

Conjecture 4.4.1. In the set of all proper maximal differential ideals of the
real full universal solution algebra constructed above there always exists a real
ideal.

We will show that in the situation considered this conjecture holds true.
It gives us the possibility to choose from E such a maximal real differential
ideal J which is not contained in any maximal differential ideal. The idea
behind this is the following. If we divide R by J we obtain a real integral
domain R/J which does not contain any proper real differential ideal and
what is more it also does not contain any proper differential ideal.

We obtain the following results:
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Lemma 4.4.1. Let K be a real differential field with real closed field of
constants CK. Let A be a finitely generated K-algebra without zero divisors
and let S = Fr(R). If c ∈ CS \ CK, then c is transcendent over K.

For the proof see [36], lemma 3.1.

Lemma 4.4.2. Let K be a real differential field with real closed field of
constants CK. Let A be a finitely generated K-algebra without zero divisors
and let a be an element of A. Then either a is algebraic over K or there is
a constant c ∈ CK such that a− c is not invertible in A.

For the proof see [36], lemma 3.4.

So if our conjecture holds true, then we obtain that L∗ := Fr(R/J)
is an extension of K which brings no new constants. Indeed, any element
a ∈ CL∗ \CK is by lemma 4.4.1 transcendent over K. Hence by lemma 4.4.2
there exists a constant c ∈ CK such that a − c is not invertible in R/J .
Then the ideal [a − c] is a proper differential ideal in R/J . And we have a
contradiction. So L∗ is a Picard-Vessiot extension, which is also a real field,
since J is real (see lemma 2.1.2).

We have already constructed a real field which is the Picard-Vessiot ex-
tension for equation (4.4) defined over K, i.e. L = K〈γ1, . . . , γk〉 ⊂ M [[X]],
where γ1, . . . , γk is a fundamental set of solutions of this equation. We will
prove that the ideal J considered above can always be found.

We define an epimorphism of K-algebras{
ψ : K[Uij]→ L = K[γ

(j)
i ]

ψ(Uij) = γ
(j)
j

,

which is a differential morphism. We observe that ψ(V ) = det(γ
(j)
i ) 6= 0, so

it is invertible in L. By the universal property of the ring of fractions we can
extend ψ to a K-algebra homomorphism{

ψ̃ : K[Uij]V → L

ψ̃(Uij) = γ
(j)
j

.

We define J := ker(ψ̃). Then we obtain an embedding

λ : R/J → L.

43



L is a field, so R/J is an integral domain and J is prime. Hence there

exists a fraction field homomorphism λ̃ : L∗ = Fr(R/J) → L. Since L =

K〈γ1, . . . , γk〉, then λ̃ is a field isomorphism. By lemma 2.1.2, we obtain that
J is real, because L is real.

4.5 Comments on the Fundamental Theorem.

Picard-Vessiot theory for differential fields with no algebraically closed
field of constants was described by Marvin P. Epstein (see [10] and [11]). His
result states that there exists a fundamental system of solutions (y1, . . . , yn)
for a homogeneous linear differential equation L(Y ) = 0 of order n defined
over a differential field K with field of constants CK (not necessarily alge-
braically closed), such that the field of constants of L := K〈y1, . . . , yn〉 is
a normal algebraic extension of CK . He defines such an L to be a Picard-
Vessiot extension of K for the equation L(Y ) = 0. He also proves a Galois
correspondence theorem for such generalized Picard-Vessiot extensions. If we
do not allow new constants, the normality of the Picard-Vessiot extension can
fail, as it can be easily seen by considering the algebraic case (see example 3
in the first section of this chapter). Hence obtaining Galois correspondence
in this context is not possible.
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