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PREFACE

In the spring of 1993 prof. L.P. Bos and prof. P.D. Milman circulated a preprint titled ”A Geometric
Interpretation and the Equality of Exponents in Markov and Gagliardo-Nirenberg (Sobolev) Type In-
equalities for Singular Compact Domains”, in which they proved the equivalence of a local and global
Markov inequality for polynomials on compact sets in RN , N ∈ N. They were able to achieve this re-
markable result by defining and ultimately proving the equivalence of several Sobolev-type inequalities
and extension properties for smooth functions.

The assignment for my Master’s thesis, written in 1994 under the supervision of prof. J. Siciak, was
to attempt to generalize the work by L.P. Bos and P.D. Milman for the case of compact sets in the
complex plane. At that time I succeeded only to a very limited extent, but some (partial) results and
ideas proved to be useful in subsequent research of the problem. The main difficulty lay in finding
suitable generalizations of the respective properties, the lack of an equivalent of the classic Jackson
theorems in the complex plane and obviously its complex structure.

Jointly with dr. L. Bia las-Cież we have continued this research during the past eight years. We
published one joint article titled ”L-regularity of Markov Sets and of m-Perfect Sets in the Complex
Plane” in the journal Constructive Approximation [Bia las-Eggink 1] and we submitted for publication
our second article titled ”Equivalence of the Local Markov Inequality and a Sobolev Type Inequality
in the Complex Plane” [Bia las-Eggink 2]. In this dissertation I present and expand upon the results of
these two articles, as well as subsequent research, which will be part of the source material for our next
two articles with the working titles ” Lojasiewicz-Siciak Inequality of Green’s Function and a Version of
Jackson’s Theorem in the Complex Plane” and ”Equivalence of the Global and Local Markov Inequalities
in the Complex Plane”.

Our main result is that the entire proof by L.P. Bos and P.D. Milman can be generalized to the
case of a compact set in the complex plane, provided however that for this set we have an additional
assumption to compensate for the lack of Jackson’s theorem. Indeed we know now that without such an
additional assumption, the global Markov inequality does not imply the local Markov inequality in the
complex plane. We are still searching for the weakest possible additional assumption needed to obtain
equivalence, but in this dissertation I propose a sufficient assumption under the name Jackson Property.
Furthermore we have only just started to study the complex structure of sets without this property.

The contents of this dissertation can be outlined as follows. Chapter 1 contains a brief reminder of
the preliminaries needed to understand the rest of the text, mostly by reference to the work on related
subjects by well-known authors. In chapter 2 several versions of local Markov inequalities are studied,
mostly for the sake of completeness and comparision with the version introduced by L.P. Bos and P.D.
Milman, presented here in chapter 3.

Chapter 4 deals with the geometric structure and logarithmic capacity of sets admitting the Local
Markov Property. It is proven that these sets are (m,∞)-perfect, which was conjectured earlier in
[Eggink], and this in turn yields L-regularity.

Chapters 5, 6 and 7 give a complete proof of the generalization of [Bos-Milman, theorem A], which
asserted the equivalence of the Local Markov Property and Sobolev-type inequalities in different norms.
Particular care is taken to formulate the last of the Sobolev properties in such a way to make it appear
as weak as possible, so that it can easily be deduced from an extension property.

In chapter 8 the Jackson Property is introduced together with some straightforward examples. More
importantly, a refinement of Runge’s theorem allows to link this property with the behaviour of Siciak’s
extremal function. Accordingly, it is proved that sets admitting the Hölder Continuity Property as
well as the  Lojasiewicz-Siciak inequality, i.e. estimates for the extremal function from above and below,
respectively, admit also the Jackson Property.



4 MARKOV’S INEQUALITY IN THE COMPLEX PLANE

Chapter 9 generalizes, to the extent possible, the original extention theorem for sets admitting the
Global Markov Inequality, due to prof. W. Pleśniak for compact sets in RN and based on his earlier joint
work with prof. W. Paw lucki [Pleśniak 1]. It served as the starting point for the extension property used
by L.P. Bos and P.D. Milman, which is redefined here in chapter 10 for compact sets in the complex
plane. This chapter culminates with our main result announced above, which corresponds to [Bos-
Milman, theorem B]. On the other hand it also gives an example, brought to our attention by J. Siciak,
showing that the Jackson Property is not the weakest possible assumption needed to derive the Local
Markov Property from the Global Markov Inequality.

Finally chapter 11 discusses a handful of open problems, which are the subject of our ongoing research.
For the convenience of the reader, at the end of this dissertation there is a graphical overview of its
results.

It should be noted that there is a rich literature concerning many different versions and aspects of
Markov-type polynomial inequalities and related topics, see e.g. [Pleśniak 3] or [Pleśniak 5] and [Frerick]
for excellent surveys. Most authors however are preoccupied with sets in RN . In the complex plane, the
notion of a compact set that is e.g. uniformly polynomially cuspidal, Whitney p-regular or semi-analytic
becomes trivial, because every connected set admits a local and global Markov inequality. Therefore we
are really most interested in sets that are totally disconnected or otherwise highly irregular.

No attempt whatsoever has been made to generalize any of these results for the multivariate case
in CN , where N ∈ N \ {1}, nor for Lp norms. On the other hand a lot of attention was paid to
producing self-contained if not simplistic proofs and optimizing the main coefficients, which naturally
does not imply, that they cannot be improved further. Any shortcomings in this dissertation are solely
my responsibility.

Foremost I wish to extend my special gratitude to L. Bia las-Cież for our fruitful mathematical co-
operation throughout the years, which also included a significant amount of crucial practical support. I
am much obliged to my academic advisor and friend prof. A. Edigarian for motivating me to finish this
dissertation. Furthermore I take the opportunity to thank all my former teachers and fellow students
at the Institute of Mathematics of the Jagiellonian University in Cracow for a wonderful educational
experience. Finally this work would not have been possible without the patient support of my loving
wive Elżbieta and our sons Mateusz, Ryszard, Aleksander and Przemys law.

Raimondo Eggink



MARKOV’S INEQUALITY IN THE COMPLEX PLANE 5

CHAPTER I

PRELIMINARIES

The reader is assumed to be acquainted with basic academic courses in real and complex analysis
like e.g. [Leja 2], [ Lojasiewicz] or [Rudin 2], as well as potential theory, e.g. [Tsuji 2] or [Ransford].
Furthermore we will use the following definitions and facts, all well known to specialists in the field.

In the year 1889 A.A. Markov proved his famous polynomial inequality:

Theorem 1.1 [Markov].

∀n ∈ N ∀p ∈ Pn : ‖p′‖[−1,1] ≤ n2 · ‖p‖[−1,1].

Equally well known is S.N. Bernstein’s inequality for trigonometric polynomials [Bernstein 2, chapter
1], which translates to a Markov inequality for the closed unit ball in the complex plane.

Theorem 1.2.
∀n ∈ N ∀p ∈ Pn : ‖p′‖B(0,1) ≤ n · ‖p‖B(0,1).

Comprehensive proofs of these theorems can be found in the handbooks [Pleśniak 4, chapter 11],
[DeVore, chapter 4 §1], [Rahman-Schmeisser, chapter 1] or [Cheney, chapter 3 section 7].

Definition 1.3. A compact set E ⊂⊂ K, where K = C or R, admits the Global Markov Inequality
GMI(k) where k ≥ 1, if

∃M ≥ 1 ∀n ∈ N ∀p ∈ Pn(K) : ‖p′‖E ≤M · nk · ‖p‖E .
We will write that the set E admits GMI if it admits GMI(k) for some k ≥ 1. We employ the usual
supremum norm, i.e. ‖p‖E := supz∈E |p(z)|.

Remark 1.4. Note that if a compact set E ⊂⊂ R admits GMI(k) for real polynomials, then as a set
on the complex plane it admits GMI(k) for complex polynomials too.

Furthermore the property GMI(k) is invariant under a linear change of the variable (except for the
constant M , of course).

Definition 1.5 [Leja 2, chapter 11; Fekete]. For a compact set E ⊂⊂ C and n ∈ N we define a set
of n Fekete extremal points, denoted

{
ζ

(n)
1 , . . . , ζ

(n)
n

}
⊂ E. For z1, . . . , zn ∈ C we put

V (z1, . . . , zn) :=
∏

1≤µ<ν≤n

(zν − zµ)

and subsequently we find a set of n points
{
ζ

(n)
1 , . . . , ζ

(n)
n

}
⊂ E such that∣∣∣V (ζ(n)

1 , . . . , ζ(n)
n

)∣∣∣ = max {|V (z1, . . . , zn)| : z1, . . . , zn ∈ E} .

Obviously such a set of points does not need to be unique, but its existence is guaranteed by the

compactness of the set En =

n times︷ ︸︸ ︷
E × . . .× E.

Remark 1.6. For a given set of n Fekete extremal points
{
ζ

(n)
1 , . . . , ζ

(n)
n

}
⊂ E, where n ∈ N \ {1},

we denote

dn(E) :=

 ∏
1≤µ<ν≤n

|ζ(n)
µ − ζ(n)

ν |

1/(n2)

.

From the papers by M. Fekete and F. Leja concerning the transfinite diameter [Tsuji 2, chapter III §5;
Leja 2, chapter 11; Fekete], it is now commonly known that

lim
n→∞

dn(E) = capE.
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Definition 1.7 [Leja 2, chapter 11]. For a compact set E ⊂⊂ C, any subset of n + 1 distinct
interpolation knots

{
ζ

(n)
0 , . . . , ζ

(n)
n

}
⊂ E, where n ∈ N, and a function f ∈ C(E) we define the following

Lagrange interpolation polynomial of degree n:

Lnf(z) :=
n∑
µ=0

f
(
ζ(n)
µ

)
· Ln,µ

(
z; ζ(n)

0 , . . . , ζ(n)
n

)
,

where for µ = 0, . . . , n we put

Ln,µ

(
z; ζ(n)

0 , . . . , ζ(n)
n

)
:=

∏
ν=0,...,n
ν 6=µ

z − ζ(n)
ν

ζ
(n)
µ − ζ(n)

ν

.

Remark 1.8. We see that for all µ, ν = 0, . . . , n we have

Ln,µ

(
ζ(n)
ν ; ζ(n)

0 , . . . , ζ(n)
n

)
=
{

0 if µ 6= ν,

1 if µ = ν,

and thus Lnf
(
ζ

(n)
ν

)
= f

(
ζ

(n)
ν

)
.

If we use Fekete extremal points as the interpolation knots, then for all z ∈ E and µ = 0, . . . , n we
have

∣∣∣Ln,µ (z; ζ(n)
0 , . . . , ζ

(n)
n

)∣∣∣ ≤ 1 and therefore

‖Lnf‖E ≤
n∑
µ=0

‖f‖E ·
∥∥∥Ln,µ ( · ; ζ(n)

0 , . . . , ζ(n)
n

)∥∥∥
E

= (n+ 1) · ‖f‖E .

Furthermore it is obvious that Ln is a linear operator maintaining polynomials of degree n or less.
Consequently if we assume p ∈ Pn to be the polynomial of best approximation, i.e. ‖f − p‖E =
distE(f,Pn) := infq∈Pn ‖f − q‖E , then we see that

‖Lnf − p‖E = ‖Lnf − Ln(p|E)‖E = ‖Ln(f − p|E)‖E ≤ (n+ 1) · ‖f − p‖E = (n+ 1) · distE(f,Pn),

‖f − Lnf‖E = ‖(f − p)− (Lnf − p)‖E ≤ ‖f − p‖E + ‖Lnf − p‖E ≤ (n+ 2) · distE(f,Pn).

This demonstrates that the Lagrange interpolation polynomials with knots in Fekete extremal points
have good approximation qualities.

Definition 1.9 [Siciak 1; cf. Leja 2, chapter 11]. For a compact set E ⊂⊂ C we define Siciak’s
extremal function with respect to holomorphic polynomials

ΦE(z) := lim sup
n→∞

n
√

Φn(z) for z ∈ C

where
Φn(z) := sup{|p(z)| : p ∈ Pn , ‖p‖E ≤ 1}.

Note that we have equivalently

ΦE(z) = sup
{
|p(z)|1/ deg p : p ∈ P , deg p ≥ 1 , ‖p‖E ≤ 1

}
.

Definition 1.10. For a compact set E ⊂⊂ C we define its polynomial hull

Ê := {z ∈ C : ∀p ∈ P |p(z)| ≤ ‖p‖E} = {z ∈ C : ΦE(z) = 1} .

If E = Ê then we say that the set E is polynomially convex. Note that by the maximum principle for
holomorphic functions, the complement of a polynomially convex set is simply connected.

We summarize below some important properties of the extremal function. Their proofs can be found
in the numerous papers of its creators, e.g. [Siciak 1], [Leja 2] and [Leja 1].
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Theorem 1.11. Let E ⊂⊂ C be a compact set.
(a) If capE = 0 then the set E is called polar and furthermore we have

ΦE(z) =
{

1 if z ∈ E,
+∞ if z /∈ E.

(b) If capE > 0 then we have

(i) ∀z ∈ C \ Ê : ΦE(z) = egE(z),

where gE is Green’s function of the set C \ Ê with its pole at infinity;

(ii) lim
z→∞

|z|
ΦE(z)

= capE;

(iii) ∀p ∈ P ∀z ∈ C : |p(z)| ≤
(
ΦE(z)

)deg p · ‖p‖E ,

which is called the Bernstein-Walsh-Siciak inequality.
(c) If the set E is connected, then we have

∀z ∈ C \ Ê : ΦE(z) = |ψ(z)| ,

where ψ : Ĉ \ Ê → Ĉ \B(0, 1) is a conformal mapping such that ψ(∞) =∞.

Definition 1.12. A compact set E ⊂⊂ C is called L-regular if its extremal function ΦE is continuous
on the entire complex plane.

Definition 1.13. For a compact set E ⊂⊂ C we define a closed neighbourhood with radius δ > 0:

Eδ := {z ∈ C : dist(z, E) ≤ δ} .

Definition 1.14. A compact set E ⊂⊂ C admits the Hölder Continuity Property HCP(k), where
k ≥ 1, if

∃M ≥ 1 ∀z ∈ E1 : ΦE(z) ≤ 1 +M · dist(z, E)1/k.

We will write that the set E admits HCP if it admits HCP(k) for some k ≥ 1.

Definition 1.15. A compact set E ⊂⊂ C admits the  Lojasiewicz-Siciak inequality  LS(s), where
s ≥ 1, if

∃M > 0 ∀z ∈ E1 : ΦE(z) ≥ 1 +M · dist(z, E)s.

We will write that the set E admits  LS if it admits  LS(s) for some s ≥ 1.

Remark 1.16. Note that both properties HCP and  LS can be defined equivalently in terms of
Green’s function instead of the extremal function, because for arbitrary t > 0 we have

1 + gE(z) ≤ egE(z) = ΦE(z) ≤ 1 +
et − 1
t
· gE(z)

for all z ∈ C \ Ê, such that 0 ≤ gE(z) ≤ t.

Corollary 1.17. For a compact set E ⊂⊂ C we have the following implications:

HCP =⇒ L-regularity =⇒ capE > 0.
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Proposition 1.18 [Pleśniak 1, theorem 3.3.ii]. For a compact set E ⊂⊂ C and k ≥ 1 the following
conditions are equivalent:

(i) GMI(k) i.e. ∃M ≥ 1 ∀n ∈ N ∀p ∈ Pn : ‖p′‖E ≤M · nk · ‖p‖E ,

(ii) ∃M̃ ≥ 1 ∀n ∈ N ∀p ∈ Pn : ‖p‖E1/nk
≤ M̃ · ‖p‖E .

Proof. (i)=⇒(ii) We put M̃ := eM . Fix arbitrary n ∈ N and p ∈ Pn so that for any point z0 ∈ C
we have p(z) =

∑n
j=0

p(j)(z0)
j! · (z−z0)j . Specifically, if for an arbitrary point z ∈ E1/nk we select a point

z0 ∈ E such that |z − z0| = dist(z, E) ≤ 1
nk

, then we obtain

|p(z)| ≤
n∑
j=0

‖p(j)‖E
j!

· dist(z, E)j .

By iteration of GMI we see that ‖p(j)‖E ≤M j · nk·j · ‖p‖E and therefore

|p(z)| ≤
n∑
j=0

M j · nk·j · ‖p‖E
j!

· 1
nk·j

≤ eM · ‖p‖E = M̃ · ‖p‖E .

(ii)=⇒(i) We put M := M̃ . Fix arbitrary n ∈ N, p ∈ Pn and z ∈ E. Cauchy’s integral formula tells
us that

p′(z) =
1

2πi
·

∫
∂B(z,1/nk)

p (ζ)
(ζ − z)2

· dζ

and thus

|p′(z)| ≤ 1
2π
·

∫
∂B(z,1/nk)

‖p‖E1/nk

(1/nk)2 · |dζ| =
‖p‖E1/nk

1/nk
≤ M̃ · nk · ‖p‖E = M · nk · ‖p‖E . �

Proposition 1.19. If a compact set E ⊂⊂ C admits HCP(k), where k ≥ 1, then it also admits
GMI(k).

Proof. By the assumption, if dist(z, E) ≤ 1 then ΦE(z) ≤ 1 + M · dist(z, E)1/k. Fix arbitrary
n ∈ N, p ∈ Pn and z ∈ E1/nk . Then by the Bernstein-Walsh-Siciak inequality we obtain

|p(z)| ≤
(
ΦE(z)

)n · ‖p‖E ≤ (1 +M · dist(z, E)1/k
)n
· ‖p‖E ≤

≤

(
1 +M ·

(
1
nk

)1/k
)n
· ‖p‖E =

(
1 +

M

n

)n
· ‖p‖E ≤ eM · ‖p‖E .

So we see that the set E admits condition (ii) of proposition 1.18, where M̃ := eM . �

Remark 1.20. It is widely known that every continuum in the complex plane admits HCP(2) and
thus GMI(2). L. Bia las-Cież and A. Volberg proved in [Bia las-Volberg, proposition 5.1] that the Cantor
ternary set admits HCP, with a coefficient that is still the subject of ongoing research.

Proposition 1.21. If a polynomially convex compact set E ⊂⊂ C admits GMI, then it is perfect.

Proof. By the assumption we have

∃M ≥ 1 ∃k ≥ 1 ∀n ∈ N ∀p ∈ Pn(C) : ‖p′‖E ≤M · nk · ‖p‖E .

Let’s assume to the contrary that the set E is not perfect and therefore we can find an isolated point
z0 ∈ E, so that the set E \ {z0} is compact, polynomially convex and z0 /∈ E \ {z0}. Therefore there
exists a number a > 1 such that

ΦE\{z0}(z0) > a.
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Consequently we can also find a polynomial p ∈ P such that deg p ≥ 1, ‖p‖E\{z0} ≤ 1 and |p(z0)| > adeg p.
Now for n ∈ N we put qn(z) :=

(
p(z)

)n · (z − z0) so that qn ∈ Pn·deg p+1. We see that

‖qn‖E\{z0} ≤ ‖p‖
n
E\{z0} · sup

z∈E\{z0}
|z − z0| ≤ diamE,

qn(z0) = 0,

‖qn‖E ≤ diamE,

q′n(z) =
(
p(z)

)n + n · p′(z) ·
(
p(z)

)n−1 · (z − z0),

|q′n(z0)| = |p(z0)|n > an·deg p.

Finally, by applying GMI for the set E, we obtain for all n ∈ N

an·deg p < |q′n(z0)| ≤ ‖q′n‖E ≤M · (n · deg p+ 1)k · ‖qn‖E ≤M · diamE · (n · deg p+ 1)k,

which is clearly impossible. �

Definition 1.22 [cf. Tidten 2, definition 2]. A compact set E ⊂⊂ C is called m-perfect, where
m ≥ 1, if

∃c ≥ 1 ∀z0 ∈ E ∀0 < r ≤ 1 :
{
z ∈ E :

rm

c
≤ |z − z0| ≤ r

}
6= ∅.
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CHAPTER II

LOCAL MARKOV INEQUALITY (LMI)

Definition 2.1 [cf. Eggink, definition 5.1; cf. Wallin-Wingren; cf. Jonsson-Wallin, chapter II §2
definition 2]. A compact set E ⊂⊂ C admits the Local Markov Inequality LMI(m, k), where m, k ≥ 1,
if

∀n ∈ N ∃cn ≥ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∀p ∈ Pn :

‖p′‖E∩B(z0,r) ≤
cn
rm
· ‖p‖E∩B(z0,r)

and additionally cn ≤ c1 · nk. Without the last assumption we speak of the Weak Local Markov
Inequality WLMI(m).

Definition 2.2 [cf. Wallin-Wingren; cf. Jonsson-Wallin]. A compact set E ⊂⊂ C admits the
Surround Markov Inequality SMI(m, k), where m, k ≥ 1, if

∀n ∈ N ∃cn ≥ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∀p ∈ Pn :

‖p′‖B(z0,r) ≤
cn
rm
· ‖p‖E∩B(z0,r)

and additionally cn ≤ c1 · nk. Without the last assumption we speak of the Weak Surround Markov
Inequality WSMI(m).

Definition 2.3 [Eggink, definition 5.2; cf. Jonsson-Wallin, chapter II §2 proposition 2]. For any
closed ball B := B(z0, r), where z0 ∈ C, r > 0 and m ≥ 1 we define the following norms on P:

|p|mB :=
∑
j

|p(j)(z0)|
j!

· rm·j .

Note that this is a finite sum. We also denote |p|B := |p|1B .

Proposition 2.4 [cf. Eggink, theorem 5.3; cf. Jonsson-Wallin, chapter II §2 proposition 2]. For a
fixed compact set E ⊂⊂ C, m ≥ 1 and n ∈ N, we consider the following conditions:

(i) ∃c ≥ 1 ∀B ∀p ∈ Pn : |p|B ≤
c

rm−1
· ‖p‖E∩B ,

(ii) E admits WSMI(m) for polynomials of degree n,

(iii) E admits WLMI(m) for polynomials of degree n,

(iv) ∃c ≥ 1 ∀B ∀p ∈ Pn : |p|mB ≤ c · ‖p‖E∩B ,

(v) ∃c ≥ 1 ∀B ∀p ∈ Pn : ‖p′‖B(z0,rm) ≤
c · n
rm
· ‖p‖E∩B ,

(vi) ∃c̃ ≥ 1 ∀B ∀p ∈ Pn ∀j = 1, . . . , n : |p(j)(z0)| ≤ c̃ ·
( n

rm

)j
· ‖p‖E∩B ,
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(vii) E admits WSMI(m) for polynomials of degree 1,

(viii) E is m-perfect.

Here and further in this chapter B stands for a closed ball B(z0, r), where z0 ∈ E and 0 < r ≤ 1.
We assert that (i)⇐⇒ (ii) =⇒ (iii) =⇒ (iv)⇐⇒ (v)⇐⇒ (vi) =⇒ (vii)⇐⇒ (viii).

Remark 2.5. Note that trivially we have ‖p‖E∩B ≤ ‖p‖B ≤ |p|B . Therefore in the case of a set
admitting WLMI(1), the theorem implies the equivalence of all pairs of norms (‖ · ‖E∩B , ‖ · ‖B , | · |B) of
the space Pn, uniformly with respect to B.

Also when n = 1 all contemplated conditions are equivalent.

Proof of proposition 2.4. (i)=⇒(ii) We first note that

|p′|B =
∑

0≤j≤n−1

|p(j+1)(z0)|
j!

· rj =
1
r
·
∑

0≤j≤n−1

(j + 1) · |p
(j+1)(z0)|
(j + 1)!

· rj+1 ≤

≤ n

r
·
∑

1≤j≤n

|p(j)(z0)|
j!

· rj ≤ n

r
· |p|B .

Therefore for an arbitrary ball B and polynomial p ∈ Pn, we can deduce from remark 2.5 and the
assumption that

‖p′‖B ≤ |p′|B ≤
n

r
· |p|B ≤

c · n
rm
· ‖p‖E∩B .

This implies WSMI(m) for polynomials of degree n, where we put cn := c · n.
(i)⇐=(ii) By the assumption we have

∃cn ≥ 1 ∀B ∀p ∈ Pn : ‖p′‖B ≤
cn
rm
· ‖p‖E∩B .

Applying Cauchy’s integral formula to the polynomial p′ we obtain for j = 1, . . . , n

p(j)(z0) =
(j − 1)!

2πi
·
∫
∂B

p′(ζ)
(ζ − z0)j

dζ,

|p(j)(z0)| ≤ (j − 1)!
2π

·
∫
∂B

||p′||B
|ζ − z0|j

|dζ| = (j − 1)!
rj−1

· ||p′||B ≤
(j − 1)! · cn
rm+j−1

· ‖p‖E∩B .

Therefore we have |p
(j)(z0)|
j! · rj ≤ cn

rm−1 · ‖p‖E∩B and this is obviously also true in the case that j = 0.
This way we obtain

|p|B ≤
∑

0≤j≤n

cn
rm−1

· ‖p‖E∩B ≤
(n+ 1) · cn
rm−1

· ‖p‖E∩B

and it suffices to put c := (n+ 1) · cn.
(ii)=⇒(iii) This follows straight from the definitions.
(iii)=⇒(iv) By the assumption we have

∃cn ≥ 1 ∀B ∀p ∈ Pn : ‖p′‖E∩B ≤
cn
rm
· ‖p‖E∩B .

Iterating this inequality we obtain for j = 0, . . . , n

‖p(j)‖E∩B ≤
( cn
rm

)j
· ‖p‖E∩B

and consequently
|p(j)(z0)|

j!
· rm·j ≤ cjn

j!
· ‖p‖E∩B ,
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|p|mB ≤
∑

0≤j≤n

cjn
j!
· ‖p‖E∩B ≤ ecn · ‖p‖E∩B .

Therefore it suffices to put c := ecn .
(iv)=⇒(v) We apply GMI for the ball B(z0, r

m), remark 2.5 and the assumption to see that

‖p′‖B(z0,rm) ≤
n

rm
· ‖p‖B(z0,rm) ≤

n

rm
· |p|B(z0,rm) =

n

rm
· |p|mB ≤

c · n
rm
· ‖p‖E∩B .

(v)=⇒(vi) Again we apply GMI for the ball B(z0, r
m) and the assumption to obtain

|p(j)(z0)| ≤ ‖p(j)‖B(z0,rm) ≤
( n

rm

)j−1

· ‖p′‖B(z0,rm) ≤ c ·
( n

rm

)j
· ‖p‖E∩B ,

so it suffices to put c̃ := c.
(vi)=⇒(iv) We see that

|p|mB =
∑

0≤j≤n

|p(j)(z0)|
j!

· rm·j ≤
∑

0≤j≤n

c̃

j!
·
( n

rm

)j
· rm·j · ‖p‖E∩B ≤ c̃ · en · ‖p‖E∩B ,

and in this case we put c := c̃ · en.
(vi)=⇒(vii) It suffices to note that |p′(z0)| = ‖p′‖B if p ∈ P1, so we can put c1 := c̃ · n.
(vii)=⇒(viii) By applying the assumption to p(z) := z − z0 and j = 1 we see that

1 ≤ c1
rm
· sup
z∈E∩B

|z − z0|,

which is the same as m-perfectness.
(vii)⇐=(viii) The assumption that the set E is m-perfect implies that

∃0 < c ≤ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∃z1 ∈ E ∩B(z0, r) : |z1 − z0| ≥ c · rm.

Fix arbitrary z0 ∈ E, 0 < r ≤ 1 and p ∈ P1, so that p(z) = p′(z0) · (z − z0) + p(z0). Find a point
z1 ∈ E ∩B such that |z1 − z0| ≥ c · rm. Then we can assert that

‖p‖E∩B ≥ max
{
|p (z0)|, |p (z1)|

}
≥ 1

2
·
(
|p (z0)|+ |p (z1)|

)
≥ 1

2
· |p (z1)− p (z0)| =

=
1
2
· |p′(z0)| · |z1 − z0| ≥

c

2
· rm · |p′(z0)| = c

2
· rm · ‖p′‖B .

This is equivalent to WSMI(m) for polynomials of degree 1. �

We now see that we can partly generalise proposition 2.4 to the stronger property SMI(m), where
m ≥ 1, by allowing for a variable n ∈ N while controlling the constants c = c(n).

Corollary 2.6. For a fixed compact set E ⊂⊂ C and m, k ≥ 1, we consider the following conditions:

(i) E admits SMI(m, k),

(ii) ∃c ≥ 1 ∀B ∀n ∈ N ∀p ∈ Pn : |p|B ≤
c · nk+1

rm−1
· ‖p‖E∩B ,

(iii) E admits SMI(m, k + 2),

(iv) ∃c̃ ≥ 1 ∀B ∀n ∈ N ∀p ∈ Pn : |p|mB ≤ c̃ · nk+1 · ‖p‖E∩B .

We have (i) =⇒ (ii) =⇒ (iii) and (ii) =⇒ (iv).

Proof. (i)=⇒(ii)=⇒(iii) This follows straight from the proof of (i)⇐⇒(ii) in proposition 2.4. Note
the slight deterioration in the coefficient k.

(ii)=⇒(iv) This follows from the simple observation that |p|mB ≤ rm−1 · |p|B + |p(z0)|. �
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Proposition 2.7 [cf. Bia las-Eggink 1, proposition 4.2]. If a compact set E ⊂⊂ C is m-perfect,
where 1 ≤ m < 2, then we have

∀n ∈ N ∃mn ≥ 1 ∃cn ≥ 1 ∀B ∀p ∈ Pn : |p|B ≤
cn

rmn−1
· ‖p‖E∩B .

Proof. Proposition 2.4 implies that the set E admits WSMI(m) for polynomials of degree 1, i.e.

∃c ≥ 1 ∀B ∀p ∈ P1 : ‖p′‖B ≤
c

rm
· ‖p‖E∩B .

Furthermore for m1 := m ≥ 1 and c1 := 2c ≥ 1 we see that

∀B ∀p ∈ P1 : |p|B ≤
c1

rm1−1
· ‖p‖E∩B .

In order to prove the assertion by mathematical induction, let’s assume that for some n ∈ N, where
n ≥ 2, we have already proved that

∃mn−1 ≥ 1 ∃cn−1 ≥ 1 ∀B ∀p ∈ Pn−1 : |p|B ≤
cn−1

rmn−1−1
· ‖p‖E∩B .

We put mn := 2·mn−1
2−m − 1 ≥ 1. Fix arbitrarily a ball B and p ∈ Pn, so that we can write

p(z) =
∑

0≤j≤n

aj · (z − z0)j .

If |a0| ≥
∑

1≤j≤n |aj | · rj then we see that

|p|B = |a0|+
∑

1≤j≤n

|aj | · rj ≤ 2 · |a0| = 2 · |p(z0)| ≤ 2 · ‖p‖E∩B ≤
cn

rmn−1
· ‖p‖E∩B ,

provided that we put cn ≥ 2. Alternatively, in the case that |a0| <
∑

1≤j≤n |aj | · rj , then we have

|p′|B =
∑

1≤j≤n

j · |aj | · rj−1 ≥ 1
r
·
∑

1≤j≤n

|aj | · rj >
1
2r
·
∑

0≤j≤n

|aj | · rj =
1
2r
· |p|B .

We denote B̃ := B
(
z0,

r
2

)
. From the inductive hypothesis it follows that

‖p′‖E∩B̃ ≥
(r/2)mn−1−1

cn−1
· |p′|B̃ ≥

rmn−1−1

cn−1 · 2mn−1−1
· 1

2n−1
· |p′|B >

rmn−1−2

cn−1 · 2mn−1+n−1
· |p|B ,

because p′ ∈ Pn−1. We can therefore find a point z1 ∈ E ∩ B̃ such that

|p′(z1)| > rmn−1−2

cn−1 · 2mn−1+n−1
· |p|B = c ·M · rmn−1−2 · |p|B ,

where we denote M := 1
c·cn−1·2mn−1+n−1 < 1. We also put ε :=

(
M ·m
2en

) 1
2−m < 1

2 and

Bε := B
(
z1, ε · r(mn+1)/2

)
⊂ B.

Let q(z) := (z − z1) · p′(z1). By applying WSMI(m) to q ∈ P1 we obtain

c(
ε · r(mn+1)/2

)m · ‖q‖E∩Bε ≥ ‖q′‖Bε = |p′(z1)| > c ·M · rmn−1−2 · |p|B
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and thus there exists a point zε ∈ E ∩Bε such that

|q(zε)| > M · εm · rmn−1−2+m·(mn+1)/2 · |p|B = M · εm · rmn−1 · |p|B ,

because mn−1 − 2 +m · (mn + 1)/2 = 2−m
2 · (mn + 1)− 2 +m · (mn + 1)/2 = mn − 1. Note that M and

ε do not depend on the choice of B and p.
We will estimate p(z) by developing it into a Taylor series around the point z1:

p(z) = p(z1) + q(z) + r(z),

where r(z) =
∑

2≤j≤n
p(j)(z1)

j! · (z − z1)j . Naturally we have for j = 1, . . . , n

p(j)(z) =
∑
j≤`≤n

a` · ` · (`− 1) · . . . · (`− j + 1) · (z − z0)`−j

and therefore for arbitrary z ∈ B we obtain

|p(j)(z)| ≤ nj ·
∑
j≤`≤n

|a`| · |z − z0|`−j ≤ nj ·
∑
j≤`≤n

|a`| · r`−j ≤
(n
r

)j
·
∑

0≤`≤n

|a`| · r` =
(n
r

)j
· |p|B .

In particular |p(j)(z1)| ≤
(
n
r

)j · |p|B and hence for arbitrary z ∈ Bε we have

|r(z)| ≤
∑

2≤`≤n

(n
r

)j
· |p|B ·

1
j!
·
(
ε · r(mn+1)/2

)j
=

=
∑

2≤j≤n

nj

j!
·
(
ε · r(mn−1)/2

)j
· |p|B ≤ en · ε2 · rmn−1 · |p|B .

We denote C := 1
2 ·
(
M · εm − en · ε2

)
= 1

2 · ε
m · (M − en · ε2−m) = 1

2 · ε
m ·M ·

(
1− m

2

)
independently

of the choice of B and p and we note that 0 < C < 1
2 . Now if |p(z1)| ≥ C · rmn−1 · |p|B then

|p|B ≤
1/C
rmn−1

· |p(z1)| ≤ 1/C
rmn−1

· ‖p‖E∩B .

Alternatively if |p(z1)| < C · rmn−1 · |p|B then we see that

|p(zε)| = |p(z1) + q(zε) + r(zε)| ≥ |q(zε)| − |p(z1)| − |r(zε)| >
> M · εm · rmn−1 · |p|B − C · rmn−1 · |p|B − en · ε2 · rmn−1 · |p|B =

=
(
M · εm − C − en · ε2

)
· rmn−1 · |p|B = C · rmn−1 · |p|B ,

which also implies that

|p|B ≤
1/C
rmn−1

· |p(zε)| ≤
1/C
rmn−1

· ‖p‖E∩B .

Finally we conclude the inductive step by putting, independently of the choice of B and p,

cn :=
1
C
> 2. �

Remark 2.8. A careful inspection of the constants reveals that

mn =
m2 +m− 2

m
·
(

2
2−m

)n−1

+
2−m
m

,

cn =
4 · 2mn
2−m

·
(
c2 · c2n−1 · (4em)n

mm

) 1
2−m

.

By denoting µ := 2
2−m ≥ 2 we obtain an estimate for cn:

cn ≤ 2µ · 2mn ·
(
c · cn−1 · (2e)n

)µ
.

However, if m = 1 then for all n ∈ N we have mn = 1 and cn = 8 · c2 · c2n−1 · (4e)n.
By combining the results of propositions 2.4 and 2.7 we obtain:
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Corollary 2.9 [Bia las-Eggink 1, corollary 4.4; cf. Wallin-Wingren]. If E ⊂⊂ C is an m-perfect
set and 1 ≤ m < 2, then for all n ∈ N there exists mn ≥ 1 such that the set E admits WSMI(mn) for
polynomials of degree n.

Specifically in the case of m = 1 we have:

Corollary 2.10 [cf. Jonsson-Wallin, chapter II §2 proposition 4]. A compact set E ⊂⊂ C admits
WSMI(1) if and only if it is uniformly perfect, i.e. 1-perfect.



16 MARKOV’S INEQUALITY IN THE COMPLEX PLANE

CHAPTER III

LOCAL MARKOV PROPERTY (LMP)

Whereas many different versions of local Markov-type polynomial inequalities are covered in the
literature, the version introduced by L.P. Bos and P.D. Milman seems to be the most universal.

Definition 3.1 [cf. Bia las-Eggink 1, definition 1.2; cf. Bos-Milman, definition 2.3]. A compact set
E ⊂⊂ C admits the Local Markov Property LMP(m, k), where m, k ≥ 1, if

∀n ∈ N ∃cn ≥ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∀p ∈ Pn ∀j = 1, . . . , n :

|p(j)(z0)| ≤
( cn
rm

)j
· ‖p‖E∩B(z0,r)

and additionally cn ≤ c1 ·nk. Without the last assumption we speak of the Weak Local Markov Property
WLMP(m). We will write that the set E admits LMP, respectively WLMP, if it admits LMP(m, k),
respectively WLMP(m), for some m, k ≥ 1.

Remark 3.2. L.P. Bos and P.D. Milman use a longer construction ∃r0 > 0 . . . ∀0 < r ≤ r0 . . . .
This is clearly equivalent to our definition.

We also see that this property is invariant to a linear change of the variable. This in turn implies
that we can split up a compact set E = A∪B, such that A∩B = ∅, in the sense that if the set E admits
LMP or WLMP, then both sets A and B admit the same property. Obviously the converse is true too.

Furthermore the following proposition proves that in the definition of the Local Markov Property we
can restrict ourselves to j = 1, albeit with a deterioration of the constants cn.

Proposition 3.3 [Bia las-Eggink 2, proposition 2.6]. If for a compact set E ⊂⊂ C and m ≥ 1 we
have

∀n ∈ N ∃cn ≥ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∀p ∈ Pn :

|p′(z0)| ≤ cn
rm
· ‖p‖E∩B(z0,r)

then the set E admits WLMP(m). If additionally cn ≤ c1 · nk, where k ≥ 1, then the set E admits
LMP(m, k +m).

Proof. Fix arbitrary n ∈ N, z0 ∈ E, 0 < r ≤ 1, p ∈ Pn and j ∈ {2, . . . , n}. By applying the
assumption to the derivative p(j−1) ∈ Pn and radius r/n we see that

|p(j)(z0)| ≤ cn · nm

rm
· ‖p(j−1)‖E∩B(z0,r/n).

Let z1 be a point of E∩B(z0, r/n) such that |p(j−1)(z1)| = ‖p(j−1)‖E∩B(z0,r/n). Next we obtain similarly

|p(j)(z0)| ≤ cn · nm

rm
· |p(j−1)(z1)| ≤

(
cn · nm

rm

)2

· ‖p(j−2)‖E∩B(z1,r/n).

We continue in this fashion to obtain points z1, z2, . . . , zj−1 such that for all ` = 1, . . . , j − 1 we have
z` ∈ E ∩B(z`−1, r/n) and |p(j−`)(z`)| = ‖p(j−`)‖E∩B(z`−1,r/n). This way we conclude that

|p(j)(z0)| ≤
(
cn · nm

rm

)j
· ‖p‖E∩B(zj−1,r/n) ≤

≤
(
cn · nm

rm

)j
· ‖p‖E∩B(z0,j·r/n) ≤

(
cn · nm

rm

)j
· ‖p‖E∩B(z0,r),
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which proves WLMP(m) or LMP(m, k +m), depending on the assumption regarding cn. �

Remark 3.4. If a compact set E ⊂⊂ C admits WLMP(m), where m ≥ 1, then for all z0 ∈ E,
0 < r ≤ 1, n ∈ N and p ∈ Pn we have

|p|mB(z0,r)
=

∑
0≤j≤n

|p(j)(z0)|
j!

· rm·j ≤
∑

0≤j≤n

1
j!
·
( cn
rm

)j
· ‖p‖E∩B(z0,r) · r

m·j ≤

≤
∑

0≤j≤n

1
j!
· cnn · ‖p‖E∩B(z0,r) ≤ e · c

n
n · ‖p‖E∩B(z0,r).

Compare this with proposition 2.4.

Remark 3.5. Obviously for any compact set E ⊂⊂ C and m, k ≥ 1 we have the following strings of
implications:

SMI(m, k) =⇒ LMI(m, k) =⇒ LMP(m, k) =⇒ GMI(k),

⇓ ⇓ ⇓
WSMI(m) =⇒ WLMI(m) =⇒ WLMP(m) =⇒ m− perfectness.

The vertical implications as well as the first horizontal implications follow straight from the definitions.
The second horizontal implication is obtained by iterating LMI(m, k), respectively WLMI(m), j times
in order to estimate ‖p(j)‖E∩B(z0,r), like in the proof of proposition 2.4. This way, unlike in proposition
3.3, the estimate for cn does not deteriorate. The upper third horizontal implication is obtained by
putting r = 1 and j = 1. The lower third horizontal implication follows from applying WLMP(m) with
j = 1 to the polynomial p(z) = z − z0.
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CHAPTER IV

POMMERENKE PROPERTY (PP)

Definition 4.1 [cf. Pommerenke, theorem 1]. A compact set E ⊂⊂ C admits the Pommerenke
Property PP(m), where m ≥ 1, if

∃0 < c ≤ 1 ∀z0 ∈ E ∀0 < r ≤ 1 : cap
(
E ∩B(z0, r)

)
≥ c · rm.

Remark 4.2. If a compact set E ⊂⊂ C admits PP(m), where m ≥ 1, then obviously it must be
m-perfect. To see this we use the fact that the logarithmic capacity of a ball is equal to its radius, which
can easily be deduced from theorem 1.11. Hence for arbitrary z0 ∈ E and 0 < r ≤ 1 we have

cap
(
E ∩B(z0, r)

)
≥ c · rm >

c

2
· rm = capB

(
z0,

c

2
· rm

)
≥ cap

(
E ∩B

(
z0,

c

2
· rm

))
and therefore {

z ∈ E :
c

2
· rm ≤ |z − z0| ≤ r

}
6= ∅.

Ch. Pommerenke proved that any compact set E ⊂⊂ C admits PP(1) if and only if it is uniformly
perfect. In this chapter we will introduce the much larger class of (m, s, κ)-perfect sets, where m, s ≥ 1
and κ ∈ N\{1}. Subsequently we will use these sets to prove that any compact set admitting WLMP(m),
with some m ≥ 1, also admits PP(m′) for any m′ > m2. In particular, by the Wiener criterion, this
implies L-regularity.

Definition 4.3 [cf. Bia las-Eggink 1, section 3; cf. Eggink, definition 4.1]. Denote by B a closed
ball with diameter 0 < diamB ≤ 1. We take smaller balls Bi1 ⊂ B, where i1 = 1, 2, . . . , κ for some
κ ∈ N \ {1}. Subsequently we take even smaller balls Bi1,i2 ⊂ Bi1 , where i1, i2 = 1, 2, . . . , κ and so on.
We put

E` :=
1,...,κ⋃
i1,...,i`

Bi1,...,i` , E :=
∞⋂
`=1

E`.

If there exist m, s ≥ 1, 0 < a ≤ 1 and 0 < b ≤ 1 such that for all ` ∈ Z+ and i1, . . . , i`+1 = 1, 2, . . . , κ
we have

(1) diamBi1,...,i`+1 = a · (diamBi1,...,i`)
m,

dist(Bi1,...,i`,µ, Bi1,...,i`,ν) ≥ b · (diamBi1,...,i`)
s(2)

for all µ, ν = 1, . . . , κ such that µ 6= ν,

then we will call the set E an elementary (m, s, κ)-perfect set. Here and in the sequel for ` = 0 the
symbols Bi1,...,i` and Bi1,...,i`,µ stand for the sets B and Bµ, respectively.

Such a set does not have to exist for arbitrary constants m, s, κ, a and b. In order for κ smaller balls
to fit in a bigger ball, it is definitely sufficient to require that a, b ≤ 1

2κ .
Elementary (1, 1, κ)-perfect sets were studied by M. Tsuji under the name ’general planar Cantor set’

in [Tsuji 1; see also Tsuji 2, chapter III §16.2], where he gave an estimate for their logarithmic capacity
and proved that they are L-regular. It turned out that his proof can easily be generalized for elementary
(m, s, κ)-perfect sets, however under the condition, that κ > m.
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Lemma 4.4 [cf. Bia las-Eggink 1, lemma 3.5; cf. Eggink, theorem 4.2]. Let E ⊂⊂ C be an elementary
(m, s, κ)-perfect set as above, where m, s ≥ 1 and κ ∈ N such that κ > m. Then we can assert that

capE ≥ a
s

κ−m · b · (diamB)
s·(κ−1)
κ−m ,

∀z0 ∈ E ∀0 < r ≤ diamB : cap
(
E ∩B(z0, r)

)
≥ a

s·κ
κ−m · b · r

m·s·(κ−1)
κ−m ,

lim sup
r→0

log 1/r
log 1/ cap

(
E ∩B(z0, r)

) ≥ κ−m
s · (κ− 1)

.

Proof. From equality (1) we deduce that for each ` ∈ Z+ we have

diamBi1,...,i` = a · (diamBi1,...,i`−1)m = a ·
(
a · (diamBi1,...,i`−2)m

)m =(3)

= a1+m · (diamBi1,...,i`−2)m
2

= . . . = aS(`) · (diamB)m
`

,

where S(`) := 1 +m+ . . .+m`−1, S(0) := 0. From this it follows that

(4) dist(Bi1,...,i`,µ, Bi1,...,i`,ν) ≥ as·S(`) · b · (diamB)s·m
`

for all µ 6= ν.

The papers by M. Fekete and F. Leja concerning the transfinite diameter [Tsuji 2, chapter III §5;
Leja 2, chapter 11; Fekete], teach us that for every compact set K ⊂⊂ C there exist sets of extremal
points {z(N)

µ }µ=1,...,N ⊂ K, such that

dN (K) :=

 ∏
1≤µ<ν≤N

|z(N)
µ − z(N)

ν |

1/(N2 )

−→
N→∞

capK.

Therefore for a fixed set E` =
⋃1,...,κ
i1,...,i`

Bi1,...,i` we can find sets of extremal points {zµi1,...,i`}µ=1,...,N ,
dependent also on N ∈ N \ {1}, located on each Bi1,...,i` such that

(5)

 ∏
1≤µ<ν≤N

|zµi1,...,i` − z
ν
i1,...,i`

|

1/(N2 )

−→
N→∞

capBi1,...,i` .

This way we obtain κ` · N points {zµi1,...,i` : i1, . . . , i` = 1, . . . , κ, µ = 1, . . . , N} ⊂ E`, for which we
have (in the notation of remark 1.6)

(6)
(
dκ`·N (E`)

)(κ`·N2 ) ≥ Π0 ·Π1 · . . . ·Π`−1 ·Π` =: Π,

where

Π` :=
1,...,κ∏
i1,...,i`

∏
1≤µ<ν≤N

|zµi1,...,i` − z
ν
i1,...,i`

|,

Π`−1 :=
1,...,κ∏

i1,...,i`−1

∏
1≤i`<j`≤κ

1,...,N∏
µ,ν

|zµi1,...,i`−1,i`
− zνi1,...,i`−1,j`

|,

Π`−2 :=
1,...,κ∏

i1,...,i`−2

∏
1≤i`−1<j`−1≤κ

1,...,κ∏
i`,j`

1,...,N∏
µ,ν

|zµi1,...,i`−2,i`−1,i`
− zνi1,...,i`−2,j`−1,j`

|,

. . .

. . .

. . .
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Π0 :=
∏

1≤i1<j1≤κ

1,...,κ∏
i2,...,i`
j2,...,j`

1,...,N∏
µ,ν

|zµi1,i2,...,i` − z
ν
j1,j2,...,j`

|.

We see that Π = Π` ·Π`−1 · . . . ·Π1 ·Π0 is the product of `+ 1 elements, all dependent on N ∈ N \ {1},
where Π` is determined by pairs of points belonging to the same Bi1,...,i` , Π`−1 is determined by pairs
of points belonging to the same Bi1,...,i`−1 , but to different Bi1,...,i`−1,i` and Bi1,...,i`−1,j` , and so forth.
Finally Π0 is determined by pairs of points belonging to different Bi1 and Bj1 .

Inequality (5), the fact that the logarithmic capacity of a ball is equal to its radius and equality (3)
imply that

(7) lim
N→∞

Π
1/(N2 )
` =

1,...,κ∏
i1,...,i`

capBi1,...,i` =
1,...,κ∏
i1,...,i`

diamBi1,...,i`
2

=

(
aS(`) · (diamB)m

`

2

)κ`
.

In the case of the product Πj , where j = 0, . . . , `− 1, we use inequality (4) to obtain

|zµi1,...,ij ,ij+1,...,i`
− zνi1,...,ij ,jj+1,...,j`

| ≥ dist(Bi1,...,ij ,ij+1 , Bi1,...,ij ,jj+1) ≥ as·S(j) · b · (diamB)s·m
j

.

The number of such pairs of points in the product Πj is equal to κj ·
(
κ
2

)
·κ2·(`−j−1)·N2 = κ−1

2 ·κ
2`−j−1·N2.

Consequently we have

Πj ≥
(
as·S(j) · b · (diamB)s·m

j
)κ−1

2 ·κ
2`−j−1·N2

,

log Πj ≥
κ− 1

2κ
· κ2` ·N2 · 1

κj
·
(
s · S(j) · log a+ log b+ s ·mj · log diamB

)
.

From this it follows that

log (Π`−1 ·Π`−2 · . . . ·Π0) =
`−1∑
j=0

log Πj ≥

≥ κ− 1
2κ

· κ2` ·N2 ·
`−1∑
j=0

(
s · log a · S(j)

κj
+

log b
κj

+ s · log diamB ·
(m
κ

)j)
.

By putting this into inequality (6) and applying equality (7) we obtain

log dκ`·N (E`) ≥ 2
κ` ·N · (κ` ·N − 1)

·
(
log Π` + log(Π`−1 · . . . ·Π0)

)
,

log capE` = lim
N→∞

log dκ`·N (E`) ≥ 1
κ2`
· log

(
aS(`) · (diamB)m

`

2

)κ`
+

+
κ− 1
κ
·

s · log a ·
`−1∑
j=0

S(j)
κj

+
`−1∑
j=0

log b
κj

+ s · log diamB ·
`−1∑
j=0

(m
κ

)j .

Since κ > m and E1 ⊃ E2 ⊃ . . . ⊃
⋂∞
`=1E

` = E, we see that

log capE = lim
`→∞

log capE` ≥

≥ lim
`→∞

S(`) · log a+m` · log diamB − log 2
κ`

+
κ− 1
κ
·

s · log a ·
∞∑
j=0

S(j)
κj

+
log b
1− 1

κ

+
s · log diamB

1− m
κ

 .

It is easy to verify that

S(j) =

{
j if m = 1
mj−1
m−1 if m > 1
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and in either case
∞∑
j=0

S(j)
κj

=
κ

(κ−m) · (κ− 1)
.

Finally we obtain

log capE ≥ s

κ−m
· log a+ log b+

s · (κ− 1)
κ−m

· log diamB,

capE ≥ a
s

κ−m · b · (diamB)
s·(κ−1)
κ−m .

Now fix an arbitrary point z0 ∈ E =
⋂∞
`=1

⋃1,...,κ
i1,...,i`

Bi1,...,i` and 0 < r ≤ diamB. Find `0 ∈ Z+ and
i1, . . . , i`0 such that z0 ∈ Bi1,...,i`0 and a · rm < r0 := diamBi1,...,i`0 ≤ r. Then E ∩ Bi1,...,i`0 is also an
elementary (m, s, κ)-perfect set with the same constants a, b > 0 as the set E and therefore we have

cap(E ∩Bi1,...,i`0 ) ≥ a
s

κ−m · b · (diamBi1,...,i`0 )
s·(κ−1)
κ−m = a

s
κ−m · b · r

s·(κ−1)
κ−m

0 .

Simultaneously we have E ∩B(z0, r) ⊃ E ∩B(z0, r0) ⊃ E ∩Bi1,...,i`0 and this leads to

log cap
(
E ∩B(z0, r)

)
≥ log cap

(
E ∩B(z0, r0)

)
≥ log cap

(
E ∩Bi1,...,i`0

)
≥

≥ log
(
a

s
κ−m · b

)
+
s · (κ− 1)
κ−m

· log r0 > log
(
a

s
κ−m · b

)
+
s · (κ− 1)
κ−m

· log (a · rm) =

= log
(
a

s·κ
κ−m · b

)
+
m · s · (κ− 1)

κ−m
· log r.

We conclude that
cap
(
E ∩B(z0, r)

)
≥ a

s·κ
κ−m · b · r

m·s·(κ−1)
κ−m ,

lim inf
r→0

log 1/r
log 1/ cap

(
E ∩B(z0, r)

) ≥ κ−m
m · s · (κ− 1)

,

but also

lim sup
r→0

log 1/r
log 1/ cap

(
E ∩B(z0, r)

) ≥
≥ lim
r0→0

log 1/r0

s·(κ−1)
κ−m · log 1/r0 − log

(
a

s
κ−m · b

) =
κ−m

s · (κ− 1)
. �

Definition 4.5 [cf. Bia las-Eggink 1, definition 3.1; cf. Eggink, definition 4.3]. A compact set
E ⊂⊂ C is called (m, s, κ)− perfect, where m, s ≥ 1 and κ ∈ N \ {1}, if there exist constants 0 < a ≤ 1
and 0 < b ≤ 1 such that for all z0 ∈ E there exists an elementary (m, s, κ)-perfect set Ez0 with constants
a, b and diamB = 1, so that z0 ∈ Ez0 ⊂ E.

If a set is (m,m, κ)-perfect, then we will call it simply (m,κ)-perfect. Finally, if a set is (m,κ)-perfect
for all κ ∈ N \ {1}, then we will call it (m,∞)-perfect.

Theorem 4.6 [cf. Bia las-Eggink 1, proposition 3.6; cf. Eggink, corollary 4.4]. If a compact set
E ⊂⊂ C is (m, s, κ)-perfect as above, where m, s ≥ 1 and κ ∈ N such that κ > m, then we can assert
that

capE ≥ capEz0 ≥ a
s

κ−m · b,

∀z0 ∈ E ∀0 < r ≤ 1 : cap
(
E ∩B(z0, r)

)
≥ cap

(
Ez0 ∩B(z0, r)

)
≥ a

s·κ
κ−m · b · r

m·s·(κ−1)
κ−m ,

lim sup
r→0

log 1/r
log 1/ cap

(
E ∩B(z0, r)

) ≥ κ−m
s · (κ− 1)

.

Consequently the set E admits PP
(
m·s·(κ−1)
κ−m

)
and by Wiener’s criterion it is L-regular.

Proof. This follows straight from the definitions, lemma 4.4 and Wiener’s criterion [Tsuji 2, theorem
III 62, corollary 2] . �
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Proposition 4.7 [cf. Bia las-Eggink 1, lemmas 3.2 and 3.3; cf. Eggink, theorem 4.5]. For a fixed
compact set E ⊂⊂ C, m, s ≥ 1 and κ ∈ N \ {1} we consider the following conditions:

∃0 < c ≤ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∃z1, . . . , zκ−1 ∈ E ∩B(z0, r) :(i)

|zµ − zν | ≥ c · rm for all µ, ν = 0, . . . , κ− 1 such that µ 6= ν,

(ii) E is (m,κ)-perfect,

(iii) E is (m, s, κ)-perfect,

∃0 < c ≤ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∃z1, . . . , zκ−1 ∈ E ∩B(z0, r) :(iv)

|zµ − zν | ≥ c · rm·s for all µ, ν = 0, . . . , κ− 1 such that µ 6= ν.

We assert that (i) =⇒ (ii), (ii) =⇒ (iii) provided that s ≥ m, and (iii) =⇒ (iv) regardless of s ≥ 1.

Proof. (i) =⇒ (ii) For an arbitrary point z0 ∈ E we will construct by induction an elementary
(m,m, κ)-perfect set Ez0 with constants a = b = c

2·4m and diamB = 1 such that z0 ∈ Ez0 ⊂ E. We
start by putting B := B(z0, r0), where r0 := 1

2 , so that diamB = 2r0 = 1.
Assume that we have already constructed balls Bi1,...,i` = B(zi1,...,i` , r`) for all ` ≤ `0 and i1, . . . , i` =

1, . . . , κ, as stipulated by definition 4.3, and assume that zi1,...,i` ∈ E. Note that according to equality
(1), the diameter of the ball Bi1,...,i` depends only on ` and not on the choice of i1, . . . , i`.

Now for fixed i1, . . . , i`0 = 1, . . . , κ we apply assumption (i) to the point zi1,...,i`0 ,κ := zi1,...,i`0 and
radius 1

2r`0 . Therefore there exist κ− 1 points, which we denote zi1,... ,i`0 ,j , where j = 1, . . . , κ− 1, such
that

zi1,...,i`0 ,j ∈ E ∩B
(
zi1,...,i`0 ,

r`0
2

)
for j = 1, . . . , κ,

|zi1,...,i`0 ,µ − zi1,...,i`0 ,ν | ≥ c ·
(r`0

2

)m
for µ, ν = 1, . . . , κ, such that µ 6= ν.

We put r`0+1 := c
4·2m ·r

m
`0

= 1
2a·(2r`0)m and Bi1,...,i`0 ,j := B(zi1,...,i`0 ,j , r`0+1) for j = 1, . . . , κ because

this way we have diamBi1,...,i`0 ,j = 2r`0+1 = a · (2r`0)m = a · (diamBi1,...,i`0 )m and

dist(Bi1,...,i`0 ,µ, Bi1,...,i`0 ,ν) ≥ |zi1,...,i`0 ,µ − zi1,...,i`0 ,ν | − 2r`0+1 ≥
c

2 · 2m
· rm`0 = b · (diamBi1,...,i`0 )m

for all µ, ν = 1, . . . , κ such that µ 6= ν. We also see that Bi1,...,i`0 ,j ⊂ Bi1,...,i`0 because

r`0+1 + |zi1,...,i`0 ,j − zi1,...,i`0 | ≤
c

4 · 2m
· rm`0 +

1
2
r`0 < r`0 .

We repeat this construction for all i1, . . . , i`0 = 1, . . . , κ and then we increase `0. This way we obtain
an elementary (m,m, κ)-perfect set with constants a, b and diamB = 1

Ez0 :=
∞⋂
`=1

1,...,κ⋃
i1,...,i`

Bi1,...,i` .

Note that z0 ∈ Ez0 because z0 = zκ = zκ,κ = zκ,κ,κ = . . . and therefore this point is an element of all
unions

⋃1,...,κ
i1,...,i`

Bi1,...,i` .
It remains to verify that Ez0 ⊂ E. For an arbitrary point z ∈ Ez0 we can find the unique sequence

i1, i2, i3, . . . for which
∀` ∈ N : z ∈ Bi1,...,i` .

We see that |z − zi1,...,i` | ≤ 1
2 · diamBi1,...,i` = r` −→

`→∞
0, hence zi1,...,i` −→

`→∞
z. Because by the

construction zi1,...,i` ∈ E and the set E is compact, so we must have z ∈ E, which proves that Ez0 ⊂ E.
(ii)=⇒(iii) This implication is trivial, provided that s ≥ m.
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(iii)=⇒(iv) Assume that the set E is (m, s, κ)-perfect with constants a, b > 0. By definition 4.5,
for arbitrary z0 ∈ E and 0 < r ≤ 1 we can find an elementary (m, s, κ)-perfect set Ez0 such that
z0 ∈ Ez0 ⊂ E. We denote Ez0 =

⋂∞
`=1

⋃1,...,κ
i1,...,i`

Bi1,...,i` . By equality (3) we have diamBi1,...,i` =

aS(`) · (diamB)m
`

= aS(`), because diamB = 1. We find the unique ` ∈ N for which aS(`) < r ≤ aS(`−1)

and i1, . . . , i` such that z0 ∈ Bi1,...,i` . Exactly one of the balls Bi1,...,i`,j , where j = 1, . . . , κ, contains
the point z0, say the last one. Consequently from each of the remaining balls we can select an arbitrary
point zj ∈ E ∩Bi1,...,i`,j , where j = 1, . . . , κ− 1, so that we have

zj ∈ Bi1,...,i`,j ⊂ Bi1,...,i` ⊂ B (z0,diamBi1,...,i`) = B
(
z0, a

S(`)
)
⊂ B(z0, r),

|zµ − zν | ≥ dist (Bi1,...,i`,µ, Bi1,...,i`,ν) ≥ as·S(`) · b = as·
(
m·S(`−1)+1

)
· b =

= as ·
(
aS(`−1)

)m·s
· b ≥ as · rm·s · b for all µ, ν = 1, . . . , κ such that µ 6= ν,

where we denote zκ := z0. This proves condition (iv) with the constant c := as · b. �

Corollary 4.8 [Bia las-Eggink 1, theorem 3.4; Eggink, corollary 4.6]. Any m-perfect set is (m, 2)-
perfect. Any (m, 2)-perfect set is m2-perfect.

Proof. Definition 1.22 implies that a compact set E ⊂⊂ C is m-perfect if and only if [Siciak 2,
proposition 0.1]

(8) ∃0 < c ≤ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∃z1 ∈ E ∩B(z0, r) : |z1 − z0| ≥ c · rm.

Therefore it is sufficient to apply proposition 4.7 with s := m and κ := 2. �

Corollary 4.9 [Bia las-Eggink 1, theorem 3.7]. All m-perfect sets with 1 ≤ m < 2 are L-regular.

Proof. This is a direct consequence of corollary 4.8 and theorem 4.6. �

Remark 4.10. If a compact set is m-perfect and hence (m, 2)-perfect, where m ≥ 2, while it is not
(m,κ)-perfect with some κ > m, then it may have zero logarithmic capacity and consequently not be
L-regular. Such an example of a Cantor-type set can be found in [Siciak 2, example 2.2].

A. Goncharov [Goncharov 2, corollary 3.1] also found m = 2 to be the boundary value for the
existence of a continuous and linear extension operator from the space of Whitney fields E(K) to C∞(R)
for m-perfect Cantor-type sets K ⊂⊂ R.

On the other hand, for any fixed m > 1, A. Goncharov and H.B. Uzun [Goncharov-Uzun, example 2]
have constructed a compact set on the real axis, which is m-perfect but not µ-perfect for any µ < m,
and it admits HCP(8m).

Furthermore they have constructed an example [Goncharov-Uzun, example 1] of a set, which is m-
perfect and actually also (m,∞)-perfect for any m > 1, while it is not uniformly perfect and it does not
admit GMI.

J. Lithner generalized the result of [Bia las-Volberg] concerning the Cantor ternary set to prove the
following theorem.

Theorem 4.11 [Lithner, theorem 5.1; cf. Siciak 5]. For 0 < t ≤ 1
3 , denote by Et the family of

elementary (1, 1, 2)-perfect sets with constants a = b = t and diamB = 1. Then all sets in this family
admit HCP with constants M,k ≥ 1 dependent only on t.

Corollary 4.12. Any uniformly perfect set admits HCP.

Proof. Corollary 4.8, the first part of the proof of proposition 4.7 and definition 4.5 imply that any
uniformly perfect set is the sum of elementary (1, 1, 2)-perfect sets belonging to the family Et, where
t := c

8 depends only on the constant c in equality (8). This then leads to HCP by theorem 4.11. �

Combining this with remark 3.5, we obtain the main result of [Lithner].

Corollary 4.13 [Lithner, theorem 6.2]. If a compact set E ⊂⊂ C admits WLMI(1), then it also
admits HCP and GMI.

Remark 4.14. L. Bia las-Cież has proved in [Bia las 1] the equivalence of the properties WLMI(1),
HCP and GMI for all Cantor-type sets used by W. Pleśniak [Pleśniak 2].
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Theorem 4.15 [cf. Bia las-Eggink 2, theorem 4.3]. If a compact set E ⊂⊂ C admits WLMP(m),
where m ≥ 1, then it is an (m,∞)-perfect set.

Proof. We assume that

∀n ∈ N ∃cn ≥ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∀p ∈ Pn ∀j = 1, . . . , n :

|p(j)(z0)| ≤
( cn
rm

)j
· ‖p‖E∩B(z0,r).

Fix an arbitrary point z0 ∈ E, 0 < r ≤ 1 and κ ∈ N \ {1, 2}. We will show that there exists a constant
0 < aκ ≤ 1 dependent only on the set E and there exist points z1, . . . , zκ−1 ∈ E ∩B(z0, r) such that

|zµ − zν | ≥ aκ · rm for all µ, ν = 0, . . . , κ− 1, such that µ 6= ν,

which, according to proposition 4.7, is sufficient to prove that the set E is (m,κ)-perfect. Note that
(m, 3)-perfectness implies (m, 2)-perfectness.

We put

aκ :=
1

2 · (2e)m · (κ− 1)m · cκ−1

and construct the points {zj}j=1,...,κ−1 as follows. Let j := 1.
Put

(9) rj := r ·
(
κ− 2
κ− 1

)j−1

.

Now find κ Fekete extreme points for the intersection E ∩ B(z0, rj) and denote them by ζ
(j)
1 , . . . , ζ

(j)
κ .

These are distinct points because the set E is perfect. For µ = 1, . . . , κ denote by Lj,µ ∈ Pκ−1 the
Lagrange polynomials (see definition 1.7)

Lj,µ(z) :=

∏
`=1,...,κ
` 6=µ

(
z − ζ(j)

`

)
∏

`=1,...,κ
` 6=µ

(
ζ

(j)
µ − ζ(j)

`

) .

Observe that for all 1 ≤ µ < ν ≤ κ we have

1∣∣∣ζ(j)
ν − ζ(j)

µ

∣∣∣2 =

∣∣∣∣∣∣∣∣∣∣

∏
`=1,...,κ
` 6=µ,ν

(
ζ

(j)
ν − ζ(j)

`

)
∏

`=1,...,κ
` 6=µ

(
ζ

(j)
µ − ζ(j)

`

) ·
∏

`=1,...,κ
` 6=µ,ν

(
ζ

(j)
µ − ζ(j)

`

)
∏

`=1,...,κ
` 6=ν

(
ζ

(j)
ν − ζ(j)

`

)
∣∣∣∣∣∣∣∣∣∣

=
∣∣∣∣ ddzLj,µ (ζ(j)

ν

)∣∣∣∣ · ∣∣∣∣ ddzLj,ν (ζ(j)
µ

)∣∣∣∣ .

Thus, by the assumption, we have for each 0 < % ≤ 1

1∣∣∣ζ(j)
ν − ζ(j)

µ

∣∣∣2 ≤
(
cκ−1

%m

)2

· ‖Lj,µ‖E∩B(ζ
(j)
ν ,%)

· ‖Lj,ν‖E∩B(ζ
(j)
µ ,%)

.

Now assume that for each µ = 1, . . . , κ we have

(10)
∣∣∣ζ(j)
µ − z0

∣∣∣ ≤ κ− 3/2
κ− 1

· rj .

In such case we put % := 1/2
κ−1 · rj so that we have for all µ = 1, . . . , κ

E ∩B(ζ(j)
µ , %) ⊂ E ∩B(z0, rj)
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and for all 1 ≤ µ < ν ≤ κ

1∣∣∣ζ(j)
ν − ζ(j)

µ

∣∣∣2 ≤
 cκ−1(

1/2
κ−1 · rj

)m
2

· ‖Lj,µ‖E∩B(z0,rj) · ‖Lj,ν‖E∩B(z0,rj) =

(
2m · (κ− 1)m · cκ−1

rmj

)2

because by remark 1.8, the norm of these Lagrange polynomials on the set E ∩ B(z0, rj) is equal to 1.
We see that ∣∣∣ζ(j)

ν − ζ(j)
µ

∣∣∣ ≥ rmj
2m · (κ− 1)m · cκ−1

=

(
r ·
(
κ−2
κ−1

)j−1
)m

2m · (κ− 1)m · cκ−1
.

Note that for all x > 0 we have
(
x+1
x

)x =
(
1 + 1

x

)x
< e and in particular, by putting x := κ− 2 we see

that
(
κ−2
κ−1

)κ−2

> 1
e . From this it follows that for all 1 ≤ µ < ν ≤ κ we have

∣∣∣ζ(j)
ν − ζ(j)

µ

∣∣∣ ≥ rm

(2e)m · (κ− 1)m · cκ−1
= 2aκ · rm,

as long as j ≤ κ − 1. Thus at most one point of the set {ζ(j)
µ }µ=1,...,κ can be included in the interior

of the ball B(z0, aκ · rm). After removing from {ζ(j)
µ }µ=1,...,κ that one point, or any arbitrary point if

none belongs to the interior of B(z0, aκ · rm), we are left with κ− 1 points that meet the requirements
of proposition 4.7.

If assumption (10) is not met, then we conclude that for a certain µ ∈ {1, . . . , κ} we have∣∣∣ζ(j)
µ − z0

∣∣∣ > κ− 3/2
κ− 1

· rj .

In this case we put zj := ζ
(j)
µ , after which we increase j by 1 and return to (9).

This way, either for a certain j ∈ {1, . . . , κ− 1} condition (10) will be satisfied and then the problem
will be solved, or we end up with a set of points {zj}j=1,...,κ−1 ⊂ E with the following property:

r ·
(
κ− 2
κ− 1

)j−1

· κ− 3/2
κ− 1

=
κ− 3/2
κ− 1

· rj < |zj − z0| ≤ rj = r ·
(
κ− 2
κ− 1

)j−1

for each j ∈ {1, . . . , κ− 1}. From this it is easy to see that for all 1 ≤ µ < ν ≤ κ− 1 we have

|zµ − zν | ≥ |zµ − z0| − |zν − z0| ≥ r ·
(
κ− 2
κ− 1

)µ−1

· κ− 3/2
κ− 1

− r ·
(
κ− 2
κ− 1

)ν−1

=

= r ·
(
κ− 2
κ− 1

)µ−1

·

(
κ− 3/2
κ− 1

−
(
κ− 2
κ− 1

)ν−µ)
≥ r ·

(
κ− 2
κ− 1

)µ−1

·
(
κ− 3/2
κ− 1

− κ− 2
κ− 1

)
>

> r · 1
e
· 1/2
κ− 1

≥ aκ · rm

since m ≥ 1 and cκ ≥ 1. But similarly we also have

|zµ − z0| ≥ r ·
(
κ− 2
κ− 1

)µ−1

· κ− 3/2
κ− 1

> r · 1
e
· 1/2
κ− 1

≥ aκ · rm

for each µ = 1, . . . , κ− 1, which finishes the proof. �

Corollary 4.16. If a compact set E ⊂⊂ C admits WLMP(m), where m ≥ 1, then it admits PP(m′)
for any m′ > m2 if m > 1 and m′ = 1 if m = 1. Consequently by Wiener’s criterion it is L-regular.

Proof. By theorem 4.15, definition 4.5 and theorem 4.6, the set E admits PP
(
m2·(κ−1)
κ−m

)
for any

κ ∈ N such that κ > m. Now it suffices to note that limκ→∞
m2·(κ−1)
κ−m = m2 and in the case that m = 1,

this limit is actually achieved for any κ.
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Corollary 4.17. If a compact set E ⊂⊂ C admits LMP(m, k), where m, k ≥ 1, implying that
cn ≤ c1 · nk for all n ∈ N, then in the proof of theorem 4.15 we can put

aκ :=
1

2 · (2e)m · c1 · κm+k
.

From the proof of proposition 4.7 and theorem 4.6 we obtain the following estimate for the logarithmic
capacity for any κ ∈ N such that κ > m:

∀z0 ∈ E ∀0 < r ≤ 1 : cap
(
E ∩B(z0, r)

)
≥
(

C

κm+k

) m·κ
κ−m+1

· r
m2·(κ−1)
κ−m

where C := 1
4·(8e)m·c1 depends only on the set E.

Remark 4.18. L. Bia las-Cież achieved a better estimate in [Bia las 3, chapter II §2.2; see also Bia las-
Eggink 1, proposition 2.1] by using a different technique. She proved that for any compact set E ⊂⊂ C
admitting LMP(m, k), where m, k ≥ 1, we have

∀z0 ∈ E ∀0 < r ≤ 1 : cap
(
E ∩B(z0, r)

)
≥ ϑ2m+k

2m · c1
· rm,

where

ϑ := exp

2 ·
∞∑
j=2

log(1/j)
(j + 1) · (j + 2)

 ≈ 3
10

is some absolute constant. This implies that the set E actually admits PP(m), however this technique
does not give any geometric clues and also it does not work for WLMP.
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CHAPTER V

SOBOLEV PROPERTY IN WHITNEY NORMS (SPW)

Definition 5.1 [cf. Bos-Milman §2]. For a smooth function f ∈ C∞(C), a compact set E ⊂⊂ C and
` ∈ N we define:

|f |E,` :=
∑
|α|=`

‖Dαf‖E , |f |E,0 := ‖f‖E ,

‖f‖E,` := ‖f‖E + |f |E,`, ‖f‖E,0 := ‖f‖E ,

T `z0f(z) :=
∑
|α|≤`−1

1
α!
·Dαf(z0) · (z − z0)α,

R`z0f(z) := f(z)− T `z0f(z),

where for α = (α1, α2) ∈ Z2
+ we put:

|α| := α1 + α2,

α! := α1! · α2!,

Dα :=
∂|α|

∂zα1 · ∂z̄α2
,

(z − z0)α := (z − z0)α1 · (z̄ − z̄0)α2 .

T `z0f is the Taylor polynomial (not necessarily holomorphic) of the function f of degree ` − 1 around
the point z0 ∈ C and R`z0f is its remainder.

Different versions of the following proposition are well known.

Proposition 5.2 Taylor formula with the remainder of Lagrange. For any smooth func-
tion f ∈ C∞(C), ` ∈ N and interval I = [z0, z1] ⊂ C we have

|R`z0f(z1)| ≤ min
{

1,
2`

`!

}
· |z1 − z0|` · |f |I,`.

Proof. Let’s define two smooth functions for t ∈ R

f̃(t) := f
(
z0 + t · (z1 − z0)

)
,

ϕ(t) :=
`−1∑
j=0

1
j!
· (1− t)j · f̃ (j)(t).

Then it follows that

ϕ′(t) =
`−1∑
j=1

1
(j − 1)!

· (−1) · (1− t)j−1 · f̃ (j)(t) +
`−1∑
j=0

1
j!
· (1− t)j · f̃ (j+1)(t) =

= −
`−1∑
j=1

1
(j − 1)!

· (1− t)j−1 · f̃ (j)(t) +
∑̀
j=1

1
(j − 1)!

· (1− t)j−1 · f̃ (j)(t) =
1

(`− 1)!
· (1− t)`−1 · f̃ (`)(t),

ϕ(1)− ϕ(0) =
∫ 1

0

ϕ′(t) dt,
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|ϕ(1)− ϕ(0)| ≤
∫ 1

0

|ϕ′(t)| dt ≤ ‖f̃ (`)‖[0,1] ·
∫ 1

0

1
(`− 1)!

· (1− t)`−1 dt =
1
`!
· ‖f̃ (`)‖[0,1].

Differentiating f̃ and using the Leibniz rule we obtain for each j ∈ N

f̃ (j)(t) =
∑
|α|=j

(
j

α1

)
·Dαf

(
z0 + t · (z1 − z0)

)
· (z1 − z0)α

and

‖f̃ (`)‖[0,1] ≤
∑
|α|=`

(
`

α1

)
· ‖Dαf‖I · |z1 − z0||α| ≤ max

0≤α1≤`

(
`

α1

)
· |z1 − z0|` · |f |I,`.

On the other hand we have
ϕ(1) = f̃(1) = f(z1),

ϕ(0) =
`−1∑
j=0

1
j!
· f̃ (j)(0) =

`−1∑
j=0

∑
|α|=j

1
α1! · α2!

·Dαf(z0) · (z1 − z0)α = T `z0f(z1).

Therefore we conclude that

∣∣R`z0f(z1)
∣∣ =

∣∣f(z1)− T `z0f(z1)
∣∣ = |ϕ(1)− ϕ(0)| ≤ 1

`!
· ‖f̃ (`)‖[0,1] ≤

≤
max0≤α1≤`

(
`
α1

)
`!

· |z1 − z0|` · |f |I,` ≤ min
{

1,
2`

`!

}
· |z1 − z0|` · |f |I,`. �

Definition 5.3 [Eggink, definition 7.5; cf. Siciak 3]. For a compact set E ⊂⊂ C we define the family
of smooth functions that are ∂̄-flat on E:

A∞(E) :=
{
f ∈ C∞(C) : the function

∂f

∂z̄
is flat on E

}

A function g ∈ C∞(C) is said to be flat in the point z0 if Dαg(z0) = 0 for all α ∈ Z2
+. This definition

is slightly different than in [Siciak 3], where A∞(E) stood for functions defined on E only, which will
be denoted here as A∞(E)|E := {f|E : f ∈ A∞(E)}.

The following proposition is also well known to specialists.

Proposition 5.4. If a compact set E ⊂⊂ C is perfect, then it is determining for functions of the
class A∞(E), in other words A∞-determining, which means:

f ∈ A∞(E), f|E ≡ 0 =⇒ ∀α ∈ Z2
+ : (Dαf)|E ≡ 0.

Proof. Let’s fix a function f ∈ A∞(E), such that f ≡ 0 on E, and a point z0 ∈ E. Because the
set E is perfect, we can find a sequence of different points {zj}j∈N ⊂ E such that zj −→

j→∞
z0 and next

a subsequence also denoted {zj}j∈N such that arg(zj − z0) −→
j→∞

γ for some angle γ ∈ [0, 2π). Then we

have
f(zj)− f(z0)
|zj − z0|

−→
j→∞

Dγf(z0),

where Dγf stands for the directional derivative of f , i.e.

Dγf(z0) := lim
t→0

f(z0 + t · eγ·i)− f(z0)
t

= cos γ · ∂f
∂x

(z0) + sin γ · ∂f
∂y

(z0)

and, as usual, z = x+ y · i.
However, since f(zj)− f(z0) = 0 for all j ∈ N, we see that

cos γ · ∂f
∂x

(z0) + sin γ · ∂f
∂y

(z0) = Dγf(z0) = 0,
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while by the definition of A∞(E) we have

1
2
· ∂f
∂x

(z0) +
1
2
· i · ∂f

∂y
(z0) =

∂f

∂z̄
(z0) = 0.

Solving this system of linear equations we obtain

∂f

∂x
(z0) =

∂f

∂y
(z0) = 0

and consequently ∂f
∂z (z0) = 0, which means that Dαf ≡ 0 on E if |α| = 1. We can now apply

mathematical induction because ∂f
∂z ∈ A

∞(E). �

Definition 5.5 [cf. Bos-Milman, definition 2.1]. For a compact set E ⊂⊂ C and ` ∈ N we define
Whitney ’norms’ for f ∈ C∞(C):

|||f |||E,` := ‖f‖E + sup
z,z0∈E
z 6=z0

|R`z0f(z)|
|z − z0|`

,

|||f |||E := ‖f‖E .

Remark 5.6. If z, z0 ∈ E, z 6= z0, then by the Taylor formula with the remainder of Lagrange we
have

|R`z0f(z)|
|z − z0|`

≤ min
{

1,
2`

`!

}
· |f |[z0,z],` ≤ min

{
1,

2`

`!

}
· |f |convE,`,

where convE stands for the convex hull of the set E. This shows that the Whitney norms are well
defined.

On the other hand, if we assume that the set E is perfect and thus A∞-determining and also that
f ∈ A∞(E), then we see that

R`z0f(z) = f(z)− T `z0f(z) =
∑
|α|=`

1
α!
·Dαf(z0) · (z − z0)α +O

(
|z − z0|`+1

)
=

=
1
`!
· f (`)(z0) · (z − z0)` +O

(
|z − z0|`+1

)
.

In this case we obtain

sup
z∈E
z 6=z0

|R`z0f(z)|
|z − z0|`

≥ lim
z→z0

|R`z0f(z)|
|z − z0|`

=
1
`!
· |f (`)(z0)|,

sup
z,z0∈E
z 6=z0

|R`z0f(z)|
|z − z0|`

≥ sup
z0∈E

1
`!
· |f (`)(z0)| = 1

`!
· ||f (`)||E =

1
`!
· |f |E,`.

Remark 5.7. The Whitney ’norms’ are in the general case only seminorms. If a compact set E is
C∞-determining (respectively A∞-determining), then any function f ∈ C∞(E) := C∞(C)|E (respectively
f ∈ A∞(E)|E) can be identified with its Whitney field on the set E, i.e. (Dαf)α∈Z2

+
, which in turn

determines the Taylor polynomials T `z0 for any z0 ∈ E. In such case the Whitney norms are norms on
the space E(E) of Whitney fields or on C∞(E) (respectively A∞(E)|E). Note also that many different
versions of the Whitney norms appear in the literature, see e.g. [Whitney], [Tidten 1], [Tidten 2],
[Bos-Milman 1] or [Bos-Milman 3].

Definition 5.8 [cf. Eggink, definition 7.8; cf. Bos-Milman, definition 2.12]. A compact set E ⊂⊂ C
admits the Sobolev Property in Whitney norms SPW(m, k), where m, k ≥ 1, if

∀` ∈ N ∃c` ≥ 1 ∀j ∈ N such that ` ≥ m · j ∀f ∈ A∞(E) :

|f |E,j ≤ cj` · |||f |||
1−m·j`
E · |||f |||

m·j
`

E,`

and additionally c` ≤ c1 · `k. Without the last assumption we speak of the Weak Sobolev Property in
Whitney norms WSPW(m).
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Theorem 5.9 [cf. Eggink, theorem 7.9; cf. Bos-Milman, theorem A]. For any compact set E ⊂⊂ C
and m, k ≥ 1 we have

LMP(m, k) =⇒ SPW(m, k),

WLMP(m) =⇒ WSPW(m).

Proof. Let’s first assume that the set E admits WLMP(m), i.e.

∀n ∈ N ∃cn ≥ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∀p ∈ Pn ∀j = 1, . . . , n :

|p(j)(z0)| ≤
( cn
rm

)j
· ‖p‖E∩B(z0,r).

Without loss of generality we can assume that cn ≥ n. By remark 3.5 and proposition 5.4 the set E is
m-perfect and A∞-determining. Fix f ∈ A∞(E) and assume that f|E 6≡ 0, since otherwise we would
have |f |E,j = 0 for all j ∈ N and the assertion would be fulfilled. For arbitrary z0 ∈ E, 0 < r ≤ 1 and
` ∈ N we have

‖R`z0f‖E∩B(z0,r) = sup
z∈E∩B(z0,r)

|R`z0f(z)| = sup
z∈E∩B(z0,r)

z 6=z0

|R`z0f(z)| ≤

≤ r` · sup
z∈E∩B(z0,r)

z 6=z0

|R`z0f(z)|
|z − z0|`

≤ r` · sup
a,z∈E
a 6=z

|R`af(z)|
|z − a|`

= r` ·
(
|||f |||E,` − ‖f‖E

)
≤ r` · |||f |||E,`,

and therefore

‖T `z0f‖E∩B(z0,r) = ‖f −R`z0f‖E∩B(z0,r) ≤ ‖f‖E∩B(z0,r) + ‖R`z0f‖E∩B(z0,r) ≤ ‖f‖E + r` · |||f |||E,`.

For all α ∈ Z2
+ such that |α| ≤ ` − 1 we have Dαf(z0) = Dα(T `z0f)(z0) because T `z0f is the Taylor

polynomial of function f of degree ` − 1 at the point z0. Since f ∈ A∞(E), we have Dαf(z0) = 0 for
all α such that α2 ≥ 1 and consequently T `z0f ∈ P`−1 is a holomorphic polynomial. We can therefore
apply WLMP to obtain for j = 1, . . . , `− 1∣∣∣∣∂jf∂zj (z0)

∣∣∣∣ =
∣∣∣(T `z0f)(j)(z0)

∣∣∣ ≤ ( c`
rm

)j
· ‖T `z0f‖E∩B(z0,r) ≤

( c`
rm

)j
·
(
‖f‖E + r` · |||f |||E,`

)
.

This estimate is also true for j = ` because by remark 5.6 we have∣∣∣∣∂`f∂z` (z0)
∣∣∣∣ ≤ ∑

|α|=`

‖Dαf‖E = |f |E,` ≤ `! · |||f |||E,` ≤
(
` · r
rm

)`
· |||f |||E,` ≤

(c` · r
rm

)`
· |||f |||E,`.

We put

r :=
(
‖f‖E
|||f |||E,`

)1/`

≤ 1

to see that

∣∣∣∣∂jf∂zj (z0)
∣∣∣∣ ≤

(
c` ·
(
|||f |||E,`
‖f‖E

)m/`)j
·
(
‖f‖E +

‖f‖E
|||f |||E,`

· |||f |||E,`
)

= cj` · |||f |||
m·j
`

E,` · ‖f‖
1−m·j`
E · 2.

Because the point z0 ∈ E was arbitrary, we obtain for all ` ∈ N and j = 1, . . . , `

|f |E,j =
∑
|α|=j

‖Dαf‖E =
∥∥∥∥∂jf∂zj

∥∥∥∥
E

≤ c̃ j` · |||f |||
1−m·j`
E · |||f |||

m·j
`

E,` ,

where c̃` := 2c`. This finishes the proof of WSPW(m), but obviously if cn ≤ c1 · nk for all n ∈ N then
also c̃` ≤ 2c1 · `k = c̃1 · `k, as required in SPW(m, k). �
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CHAPTER VI

SOBOLEV PROPERTY IN QUOTIENT NORMS (SPQ)

Definition 6.1 [Bia las-Eggink 2, definition 1.4; Eggink, definition 8.1; cf. Bos-Milman, definition
2.2]. For a compact set E ⊂⊂ C and ` ∈ N we define quotient norms for f ∈ A∞(E) (or as the case
may be f ∈ A∞(E)|E):

f E,` := inf
{
‖f̃‖convE,` : f̃ ∈ A∞(E), f̃|E ≡ f|E

}
,

f E := ‖f‖E .

Definition 6.2 [cf. Bia las-Eggink 2, definition 1.5; cf. Eggink, definition 8.2; cf. Bos-Milman,
definition 2.15]. A compact set E ⊂⊂ C admits the Sobolev Property in Quotient norms SPQ(m, k),
where m, k ≥ 1, if

∀` ∈ N ∃c` ≥ 1 ∀j ∈ N such that ` ≥ m · j ∀f ∈ A∞(E) :

|f |E,j ≤ cj` · f
1−m·j`
E · f

m·j
`

E,`

and additionally c` ≤ c1 · `k. Without the last assumption we speak of the Weak Sobolev Property in
Quotient norms WSPQ(m).

Theorem 6.3 [cf. Eggink, theorem 8.3; cf. Bos-Milman, theorem A]. For any compact set E ⊂⊂ C
and m, k ≥ 1 we have

SPW(m, k) =⇒ SPQ(m, k),

WSPW(m) =⇒ WSPQ(m).

Proof. Let’s first assume that the set E admits WSPW(m), i.e.

∀` ∈ N ∃c` ≥ 1 ∀j ∈ N such that ` ≥ m · j ∀f ∈ A∞(E) :

|f |E,j ≤ cj` · |||f |||
1−m·j`
E · |||f |||

m·j
`

E,` .

Fix `, j and f as above, and let’s take an arbitrary f̃ ∈ A∞(E) such that f̃|E = f|E . By applying
WSPW to (f̃ − f) we see that the set E is A∞-determining and for all α ∈ Z2

+ we have Dαf̃ ≡ Dαf on
E. Therefore by the Taylor formula with the remainder of Lagrange we obtain as in remark 5.6

|||f |||E,` = ‖f‖E + sup
z,z0∈E
z 6=z0

|R`z0f(z)|
|z − z0|`

= ‖f̃‖E + sup
z,z0∈E
z 6=z0

|R`z0 f̃(z)|
|z − z0|`

≤ ‖f̃‖convE + |f̃ |convE,` = ‖f̃‖convE,`.

Taking the infimum over such f̃ we obtain

|||f |||E,` ≤ inf
{
‖f̃‖convE,` : f̃ ∈ A∞(E), f̃|E ≡ f|E

}
= f E,`,

and putting this into the inequality WSPW we conclude that

|f |E,j ≤ cj` · f
1−m·j`
E · f

m·j
`

E,` .

This finishes the proof of WSPQ(m), respectively SPQ(m, k) if c` ≤ c1 · `k for all ` ∈ N. �
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Definition 6.4 [Bia las-Eggink 2, definition 1.7]. For a compact set E ⊂⊂ C we define the family of
smooth functions that are holomorphic in some open neighbourhood of the set E:

H∞(E) :=
{
f ∈ C∞(C) :

∂f

∂z̄
≡ 0 in some open neighbourhood of E

}
.

Definition 6.5 [Bia las-Eggink 2, definition 1.7]. For a compact set E ⊂⊂ C and ` ∈ N we define
holomorphic quotient norms for f ∈ H∞(E):

〈〈f〉〉E,` := inf
{
‖f̃‖convE,` : f̃ ∈ H∞(E), f̃|E ≡ f|E

}
,

〈〈f〉〉E := ‖f‖E .

Definition 6.6 [cf. Bia las-Eggink 2, definition 1.7]. A compact set E ⊂⊂ C admits the Sobolev
Property in Quotient norms for Holomorphic functions SPQH(m, s, k) where m, k ≥ 1 and s ≥ 0, if

∀` ∈ N ∃c` ≥ 1 ∀j ∈ N such that ` ≥ m · j ∀0 < δ ≤ 1 ∀f ∈ H∞(Eδ) :

|f |E,j ≤
( c`
δs

)j
· 〈〈f〉〉1−m·j`

E · 〈〈f〉〉
m·j
`

Eδ,`

and additionally c` ≤ c1 · `k. Without the last assumption we speak of the Weak Sobolev Property in
Quotient norms for Holomorphic functions WSPQH(m, s).

Theorem 6.7 [cf. Bia las-Eggink 2, theorem 1.8c]. For any compact set E ⊂⊂ C, m, k ≥ 1 and any
s ≥ 0 we have

SPQ(m, k) =⇒ SPQH(m, s, k),

WSPQ(m) =⇒ WSPQH(m, s).

Proof. The proof is immediate because H∞(Eδ) ⊂ H∞(E) ⊂ A∞(E) and convE ⊂ convEδ.
Consequently for all ` ∈ N, 0 < δ ≤ 1 and f ∈ H∞(Eδ) we have f E,` ≤ 〈〈f〉〉E,` ≤ 〈〈f〉〉Eδ,`. �

While the implication SPQH =⇒ LMP was the main subject of [Bia las-Eggink 2], here we will
produce a more convenient result by introducing yet another Sobolev property. First however, following
the example of [Bos-Milman], we construct special cutoff functions, which will allow us to estimate the
holomorphic quotient norms.

Proposition 6.8 on cutoff functions [cf. Bos-Milman, lemma 4.12; cf. Tougeron, lemma 3.3;
cf. Malgrange, lemma 4.2]. For any compact set K ⊂⊂ C and radius 0 < ε ≤ 1 there exists a cutoff
function u ∈ C∞(C) such that

(a) 0 ≤ u(z) ≤ 1 for all z ∈ C,

(b) u(z) = 1 if dist(z,K) ≤ ε

8
,

(c) u(z) = 0 if dist(z,K) ≥ ε,

(d) ‖Dαu‖C ≤
C|α|

ε|α|
for all α = (α1, α2) ∈ Z2

+

where Ct := d · t4t for t ∈ N, C0 := d and d ≥ 1 is some absolute constant.

In order to prove this proposition we need two auxiliary lemmas.

Lemma 6.9. Let χ ∈ C∞(R) and a ∈ R. Put υ(x) := χ
(
x2 + a

)
for x ∈ R so that υ ∈ C∞(R). Then

for µ ∈ Z+ we have

(1)

υ(2µ)(x) =
2µ∑
`=µ

a2µ,` · x2`−2µ · χ(`)
(
x2 + a

)
,

υ(2µ+1)(x) =
2µ+1∑
`=µ+1

a2µ+1,` · x2`−2µ−1 · χ(`)
(
x2 + a

)
.
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where for all µ ∈ N

a2µ,2µ = 2a2µ−1,2µ−1,

a2µ,` = a2µ−1,` · (2`− 2µ+ 1) + 2a2µ−1,`−1 for all ` ∈ N such that µ < ` < 2µ,

a2µ,µ = a2µ−1,µ

and for all µ ∈ Z+

a2µ+1,2µ+1 = 2a2µ,2µ,

a2µ+1,` = a2µ,` · (2`− 2µ) + 2a2µ,`−1 for all ` ∈ N such that µ < ` < 2µ+ 1.

In particular, for ν ∈ Z+ and ` = int ν+1
2 , . . . , ν we have 1 ≤ aν,` ≤ (ν + 1)! and consequently

(2) υ(ν)(x) =
ν∑

`=int ν+1
2

aν,` · x2`−ν · χ(`)
(
x2 + a

)
,

|υ(ν)(x)| ≤ (ν + 1)! ·max {1, |x|ν} ·
ν∑

`=int ν+1
2

∣∣∣χ(`)
(
x2 + a

)∣∣∣ .
Here and further int ν+1

2 denotes the largest integer smaller than or equal to ν+1
2 .

Proof. Obviously for µ = 0 we see that equalities (1) are true with a0,0 = 1 and a1,1 = 2 since
υ′(x) = 2x ·χ′

(
x2 + a

)
. Using mathematical induction we can prove equalities (1) for any µ ∈ N because

υ(2µ)(x) =
(
υ(2(µ−1)+1)

)′
(x) =

=
2µ−1∑
`=µ

a2µ−1,` ·
(

(2`− 2µ+ 1) · x2`−2µ · χ(`)
(
x2 + a

)
+ x2`−2µ+1 · 2x · χ(`+1)

(
x2 + a

))
=

=
2µ−1∑
`=µ

a2µ−1,` · (2`− 2µ+ 1) · x2`−2µ · χ(`)
(
x2 + a

)
+

2µ−1∑
`=µ

2a2µ−1,` · x2`−2µ+2 · χ(`+1)
(
x2 + a

)
=

=
2µ−1∑
`=µ

a2µ−1,` · (2`− 2µ+ 1) · x2`−2µ · χ(`)
(
x2 + a

)
+

2µ∑
`=µ+1

2a2µ−1,`−1 · x2`−2µ · χ(`)
(
x2 + a

)
=

=
2µ∑
`=µ

a2µ,` · x2`−2µ · χ(`)
(
x2 + a

)
and

υ(2µ+1)(x) =
(
υ(2µ)

)′
(x) =

=
2µ∑
`=µ

a2µ,` ·
(

(2`− 2µ) · x2`−2µ−1 · χ(`)
(
x2 + a

)
+ x2`−2µ · 2x · χ(`+1)

(
x2 + a

))
=

=
2µ∑
`=µ

a2µ,` · (2`− 2µ) · x2`−2µ−1 · χ(`)
(
x2 + a

)
+

2µ∑
`=µ

2a2µ,` · x2`−2µ+1 · χ(`+1)
(
x2 + a

)
=

=
2µ∑

`=µ+1

a2µ,` · (2`− 2µ) · x2`−2µ−1 · χ(`)
(
x2 + a

)
+

2µ+1∑
`=µ+1

2a2µ,`−1 · x2`−2µ−1 · χ(`)
(
x2 + a

)
=

=
2µ+1∑
`=µ+1

a2µ+1,` · x2`−2µ−1 · χ(`)
(
x2 + a

)
.

It is now obvious that aν,` ≥ 1 for all ν ∈ Z+ and ` = int ν+1
2 , . . . , ν.

Finally put bν := max` aν,` for all ν ∈ N. Because for all µ ∈ N and eligible ` we have a2µ,` ≤
(2µ+ 1) · b2µ−1 and a2µ+1,` ≤ (2µ+ 2) · b2µ, we see that b2µ ≤ (2µ+ 1) · b2µ−1 and b2µ+1 ≤ (2µ+ 2) · b2µ
so that altogether bν ≤ (ν + 1)!. �



34 MARKOV’S INEQUALITY IN THE COMPLEX PLANE

Corollary 6.10. Let χ ∈ C∞(R) and b ∈ R. Put Υ(ξ) := χ
(
‖ξ‖2 − b

)
for ξ = (ξ1, ξ2) ∈ R2 so that

Υ ∈ C∞(R2). Here ‖ξ‖ :=
√
ξ2
1 + ξ2

2 stands for the standard Euclidean norm. Then for any ξ ∈ R2 and
α = (α1, α2) ∈ Z2

+ such that |α| > 0, we have

∣∣∣∣ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υ(ξ)
∣∣∣∣ ≤ (α1 + 1)! · (α2 + 1)! ·max

{
1, ‖ξ‖|α|

}
· |α| ·

|α|∑
`=int

|α|+1
2

∣∣∣χ(`)
(
‖ξ‖2 − b

)∣∣∣ .
Proof. We apply equality (2) of lemma 6.9 twice; first to the function Υ( · , ξ2) with constant ξ2,

i.e. υ(x) := χ
(
x2 + a

)
where a := ξ2

2 − b, to obtain

∂α1

∂ξα1
1

Υ(ξ1, ξ2) =
α1∑

`1=int
α1+1

2

aα1,`1 · ξ
2`1−α1
1 · χ(`1)

(
ξ2
1 + ξ2

2 − b
)
,

and next to the constituents of the function ∂α1

∂ξ
α1
1

Υ(ξ1, · ) with constant ξ1, i.e. υ(x) := χ(`1)
(
x2 + a

)
where a := ξ2

1 − b, to see that

∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υ(ξ) =
∂α2

∂ξα2
2

(
∂α1

∂ξα1
1

Υ
)(

ξ1, ξ2
)

=

=
α1∑

`1=int
α1+1

2

aα1,`1 · ξ
2`1−α1
1 ·

 α2∑
`2=int

α2+1
2

aα2,`2 · ξ
2`2−α2
2 · χ(`1+`2)

(
ξ2
1 + ξ2

2 − b
) .

We conclude that ∣∣∣∣ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υ(ξ)
∣∣∣∣ ≤

≤
α1∑

`1=int
α1+1

2

α2∑
`2=int

α2+1
2

aα1,`1 · aα2,`2 · |ξ1|2`1−α1 · |ξ2|2`2−α2 ·
∣∣∣χ(`1+`2)

(
‖ξ‖2 − b

)∣∣∣ ≤
≤

α1∑
`1=int

α1+1
2

α2∑
`2=int

α2+1
2

(α1 + 1)! · (α2 + 1)! · ‖ξ‖2`1−α1+2`2−α2 ·
∣∣∣χ(`1+`2)

(
‖ξ‖2 − b

)∣∣∣ ≤
≤

α1∑
`1=int

α1+1
2

α2∑
`2=int

α2+1
2

(α1 + 1)! · (α2 + 1)! ·max
{

1, ‖ξ‖|α|
}
·
∣∣∣χ(`1+`2)

(
‖ξ‖2 − b

)∣∣∣ ≤
≤ (α1 + 1)! · (α2 + 1)! ·max

{
1, ‖ξ‖|α|

}
·

α1∑
`1=int

α1+1
2

|α|∑
`=int

|α|+1
2

∣∣∣χ(`)
(
‖ξ‖2 − b

)∣∣∣ ≤
≤ (α1 + 1)! · (α2 + 1)! ·max

{
1, ‖ξ‖|α|

}
· |α| ·

|α|∑
`=int

|α|+1
2

∣∣∣χ(`)
(
‖ξ‖2 − b

)∣∣∣ ,
because int |α|+1

2 ≤ int α1+1
2 + int α2+1

2 . �

Lemma 6.11. Let χ(t) := e1/t for t < 0. Then χ(`)(t) = (−1)` · t−2` ·Q`(t) · e1/t for any ` ∈ N, where
Q` ∈ P`−1. Moreover, Q`+1(t) = Q`(t)·(1+2`·t)−t2 ·Q′`(t) and therefore, if we put Q`(t) =

∑`−1
j=0 b`,j ·tj,

then
b`+1,0 = b`,0 = 1,

b`+1,j = b`,j + (2`− j + 1) · b`,j−1 for all j ∈ N such that j < `,

b`+1,` = (`+ 1) · b`,`−1.
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In particular for ` ∈ N and j = 0, . . . , ` − 1 we have 1 ≤ b`,j ≤ 2` · (` − 1)! and therefore |Q`(t)| ≤
2` · `! ·max{1, |t|`−1} and also |χ(`)(t)| ≤ (2`)2` · e−2` · |Q`(t)| for all t < 0.

Proof. The first part follows by induction. Indeed it is obvious that χ′(t) = −t−2 · e1/t, which
implies that Q1 ≡ 1 and b1,0 = 1. For subsequent derivatives we have

χ(`+1)(t) =
(
χ(`)

)′
(t) = (−1)` ·

(
−2` · t−2`−1 ·Q`(t) + t−2` ·Q′`(t) + t−2` ·Q`(t) · (−1) · t−2

)
· e1/t =

= (−1)`+1 · t−2(`+1) ·
(

2` · t ·Q`(t)− t2 ·Q′`(t) +Q`(t)
)
· e1/t = (−1)`+1 · t−2(`+1) ·Q`+1(t) · e1/t

and therefore

Q`+1(t) = Q`(t) · (1 + 2` · t)− t2 ·Q′`(t) =

= (1 + 2` · t) ·
`−1∑
j=0

(
b`,j · tj

)
− t2 ·

`−1∑
j=0

(
b`,j · j · tj−1

)
=

=
`−1∑
j=0

(
b`,j · tj

)
+
`−1∑
j=0

(
2` · b`,j · tj+1

)
−
`−1∑
j=0

(
b`,j · j · tj+1

)
=

=
`−1∑
j=0

(
b`,j · tj

)
+
∑̀
j=1

(
2` · b`,j−1 · tj

)
−
∑̀
j=1

(
b`,j−1 · (j − 1) · tj

)
=

= b`,0 +
∑
j∈N
j<`

((
b`,j + 2` · b`,j−1 − b`,j−1 · (j − 1)

)
· tj
)

+
(

2` · b`,`−1 − b`,`−1 · (`− 1)
)
· t` =

=
∑̀
j=0

b`+1,j · tj .

It is now obvious that b`,j ≥ 1 for all ` ∈ N and j = 0, . . . , `− 1.
We put b` := maxj b`,j for all ` ∈ N. Then we have b1 = b1,0 = 1, b2,0 = 1, b2,1 = 2b1,0 = 2 and thus

b2 = 2. If ` ≥ 2 then we have b`+1,j ≤ 2` · b` for all j ∈ N such that 2 ≤ j ≤ `, while b`+1,0 = 1 and
b`+1,1 = b`,1 + 2` · b`,0 = b`,1 + 2`. Altogether by induction we obtain b` ≤ 2` · (`− 1)!.

Finally, it suffices to note that a function a(t) := t−2` · e1/t, t < 0, attains its maximum at t0 = − 1
2` .

Proof of proposition 6.8 on cutoff functions. We naturally identify the complex plane C
with R2 and consider the compact set K̃ :=

{
(ξ1, ξ2) ∈ R2 : ξ1 + ξ2 · i ∈ K

}
⊂⊂ R2. Put

χ(t) :=
{
e1/t for t < 0,
0 for t ≥ 0,

so that χ ∈ C∞(R) and let Υ(ξ) := c0 · χ(‖ξ‖2 − c21) for ξ = (ξ1, ξ2) ∈ R2 so that Υ ∈ C∞(R2). Here
c1 := 3/8 and c0 > 0 is chosen in such a way that

∫
R2 Υ(ξ) dξ = 1, where as usual dξ = dξ1 · dξ2. Put

also Υε(ξ) := 1
ε2 ·Υ

(
ξ
ε

)
for ξ = (ξ1, ξ2) ∈ R2 and note that supp Υε = B(0, c1 · ε) ⊂⊂ R2.

We define the cutoff function that we are looking for as a convolution of Υε with the characteristic
function of the set K̃ε/2

ũ(ξ) :=
∫

dist(τ,K̃)≤ε/2
Υε(ξ − τ) dτ

and note that
0 ≤ ũ(ξ) ≤

∫
R2

Υε(ξ − τ) dτ =
∫

R2
Υε(τ) dτ =

∫
R2

Υ(τ) dτ = 1.

We also see that supp ũ =
{
ξ ∈ R2 : dist(ξ, K̃) ≤ c1 · ε+ ε/2 = 7

8ε
}

and ũ(ξ) = 1 if dist(ξ, K̃) ≤ ε
8

because in this case

ũ(ξ) =
∫

dist(τ,K̃)≤ε/2
Υε(ξ − τ) dτ ≥

∫
B(ξ,c1·ε)

Υε(ξ − τ) dτ =
∫
B(0,c1·ε)

Υε(τ) dτ = 1.
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Furthermore we have for all ξ ∈ R2 and α = (α1, α2) ∈ Z2
+ such that |α| > 0∣∣∣∣ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

ũ(ξ)
∣∣∣∣ =

∣∣∣∣∣
∫

dist(τ,K̃)≤ε/2

∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υε(ξ − τ) dτ

∣∣∣∣∣ ≤
≤
∫

dist(τ,K̃)≤ε/2

∣∣∣∣ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υε(ξ − τ)
∣∣∣∣ dτ ≤ ∫

R2

∣∣∣∣ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υε(τ)
∣∣∣∣ dτ =

=
∫
B(0,c1·ε)

∣∣∣∣ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υε(τ)
∣∣∣∣ dτ ≤ π · (c1 · ε)2 ·

∥∥∥∥ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υε

∥∥∥∥
B(0,c1·ε)

=

=
π · (c1 · ε)2

ε2+|α| ·
∥∥∥∥ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υ
∥∥∥∥
B(0,c1)

=
πc21
ε|α|
·
∥∥∥∥ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υ
∥∥∥∥
B(0,c1)

.

By consecutively applying corollary 6.10, lemma 6.11 and Stirling’s formula, according to which `! ≤(
`
e

)` · √2π` · e1/(12`), we obtain

∥∥∥∥ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υ
∥∥∥∥
B(0,c1)

≤ c0 · (α1 + 1)! · (α2 + 1)! ·max
{

1, c|α|1

}
· |α| ·

|α|∑
`=int

|α|+1
2

∥∥∥χ(`)
∥∥∥

[−c21,0]
≤

≤ c0 · (α1 + 1)! · (α2 + 1)! · |α| ·
|α|∑

`=int
|α|+1

2

(2`)2` · e−2` · 2` · `! ≤

≤ c0 · 2αα1
1 · 2α

α2
2 · |α| ·

|α|∑
`=int

|α|+1
2

(
22 · `2 · 2 · `

e2 · e

)`
·
√

2π` · e1/(12`) ≤

≤ 4c0 ·
√

2π · e1/12 · |α|α1 · |α|α2 · |α| ·
|α|∑
`=1

(
8`3

e3

)`
·
√
` ≤

≤ 11c0 · |α||α| · |α| ·
|α|∑
`=1

(
8 · |α|3

e3

)|α|
·
√
|α| ≤ 11c0 · |α||α| · |α|5/2 ·

(
8 · |α|3

e3

)|α|
≤ 11c0 · |α|4·|α|

because |α|5/2 <
(

5
2

)|α| and 5
2 ·

8
e3 < 1. Hence we conclude that∥∥∥∥ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

ũ

∥∥∥∥
R2

≤ πc21
ε|α|
·
∥∥∥∥ ∂|α|

∂ξα1
1 · ∂ξ

α2
2

Υ
∥∥∥∥
B(0,c1)

≤ πc21
ε|α|
· 11c0 · |α|4·|α| ≤

d · |α|4·|α|

ε|α|

where d := max{1, 5c0} is some absolute constant.
Finally we revert to K ⊂⊂ C for which we define the cutoff function u ∈ C∞(C) as follows:

u(z) := ũ

(
z + z̄

2
,
z − z̄

2i

)
.

Properties (a), (b) and (c) are obvious, while property (d) can easily be proved by mathematical induc-
tion. Indeed if we write

Dαu(z) =
∑
β∈Z2

+
|β|=|α|

cα,β ·
∂|β|

∂ξβ1
1 · ∂ξ

β2
2

ũ

(
z + z̄

2
,
z − z̄

2i

)

for some cα,β ∈ C, with α, β ∈ Z2
+, then we have

D(α1+1,α2)u(z) =
∑
|β|=|α|

cα,β ·

(
1
2
· ∂|β|+1

∂ξβ1+1
1 · ∂ξβ2

2

ũ+
1
2i
· ∂|β|+1

∂ξβ1
1 · ∂ξ

β2+1
2

ũ

)(
z + z̄

2
,
z − z̄

2i

)
,

D(α1,α2+1)u(z) =
∑
|β|=|α|

cα,β ·

(
1
2
· ∂|β|+1

∂ξβ1+1
1 · ∂ξβ2

2

ũ− 1
2i
· ∂|β|+1

∂ξβ1
1 · ∂ξ

β2+1
2

ũ

)(
z + z̄

2
,
z − z̄

2i

)
.
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Therefore we see that ∑
|β|=|α|+1

|c(α1+1,α2),β | ≤
∑
|β|=|α|

|cα,β |,

∑
|β|=|α|+1

|c(α1,α2+1),β | ≤
∑
|β|=|α|

|cα,β |,

which implies that for all α ∈ Z2
+ ∑

|β|=|α|

|cα,β | ≤ |c(0,0),(0,0)| = 1,

‖Dαu(z)‖C ≤
∑
|β|=|α|

|cα,β | ·

∥∥∥∥∥ ∂|β|

∂ξβ1
1 · ∂ξ

β2
2

ũ

∥∥∥∥∥
R2

≤ d · |α|4·|α|

ε|α|
. �

Proposition 6.12. For any compact set E ⊂⊂ C, 0 < δ ≤ 1, f ∈ H∞(Eδ) and ` ∈ N we have

〈〈f〉〉Eδ/17,` ≤
(2d · `)5`

δ`
· ||f ||Eδ

where d ≥ 1 is the absolute constant from proposition 6.8 on cutoff functions.

Proof. Let u ∈ C∞(C) be the cutoff function constructed in proposition 6.8 for the compact set
K := E and radius ε := δ/2. We put f̃ := u · f and see that f̃ ∈ H∞(Eδ/17) because f̃ ≡ f on Eδ/16,
which contains an open neighbourhood of the set Eδ/17. In C \Eδ/2 we have u ≡ 0 and hence Dαf̃ ≡ 0
for all α ∈ Z2

+. Consequently by the definition of the holomorphic quotient norms we have

〈〈f〉〉Eδ/17,` ≤ ‖f̃‖convEδ/17,` ≤ ‖f̃‖C,` = ‖f̃‖Eδ/2,`.

By the Leibniz rule we obtain for every z ∈ Eδ/2 and α ∈ Z2
+ such that |α| = `

Dαf̃(z) =
∑
β∈Z2

+
β≤α

(
α

β

)
·Dβu(z) ·Dα−βf(z) =

=
∑
β≤α
β2=α2

(
α

β

)
·Dβu(z) ·Dα−βf(z) =

∑
β1≤α1

(
α1

β1

)
·D(β1,α2)u(z) · f (α1−β1)(z)

because f is holomorphic in Eδ. Note that the expression β ≤ α means that β1 ≤ α1 and β2 ≤ α2,
while

(
α
β

)
:=
(
α1
β1

)
·
(
α2
β2

)
. The properties of the cutoff function and Cauchy’s integral formula lead us to

|Dαf̃(z)| ≤
∑
β1≤α1

(
α1

β1

)
· |D(β1,α2)u(z)| · |f (α1−β1)(z)| ≤

∑
β1≤α1

(
α1

β1

)
· Cβ1+α2

(δ/2)β1+α2
· ||f (α1−β1)||Eδ/2 ≤

≤
∑
β1≤α1

(
α1

β1

)
· Cβ1+α2

(δ/2)β1+α2
· (α1 − β1)!

(δ/2)α1−β1
· ||f ||Eδ =

∑
β1≤α1

α1!
β1!
· Cβ1+α2

(δ/2)|α|
· ||f ||Eδ ≤

≤
∑
β1∈Z+

|α|!
β1!
·

C|α|

(δ/2)|α|
· ||f ||Eδ =

e · `! · C`
(δ/2)`

· ||f ||Eδ ≤
2e · `` · C`

δ`
· ||f ||Eδ =

2e · d · `5`

δ`
· ||f ||Eδ ,

because 2` · `! ≤ 2``. Finally we see that

〈〈f〉〉Eδ/17,` ≤ ‖f̃‖Eδ/2,` = ‖f̃‖Eδ/2 +
∑
|α|=`

‖Dαf̃‖Eδ/2 ≤

≤ (`+ 2) · 2e · d · `5`

δ`
· ||f ||Eδ ≤

(2d · `)5`

δ`
· ||f ||Eδ ,

because (`+ 2) · 2e ≤ 25`. �
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CHAPTER VII

SOBOLEV PROPERTY FOR HOLOMORPHIC FUNCTIONS (SPH)

Definition 7.1. A compact set E ⊂⊂ C admits the Sobolev Property for Holomorphic functions
SPH(m, s, k) where m, s, k ≥ 1, if

∃c0 ≥ 0 ∀` ∈ N ∃c` ≥ 1 ∀j ∈ N such that ` ≥ m · j ∀0 < δ ≤ 1 ∀f ∈ H∞(Eδ) :

|f |E,j ≤
( c`
δs

)j+c0
· ||f ||1−

m·j
`

E · ||f ||
m·j
`

Eδ

and additionally c` ≤ c1 · `k. Without the last assumption we speak of the Weak Sobolev Property for
Holomorphic functions WSPH(m, s). We will write that the set E admits SPH, respectively WSPH, if
it admits SPH(m, s, k), respectively WSPH(m, s), for some m, s, k ≥ 1.

Theorem 7.2. For any compact set E ⊂⊂ C, m, k ≥ 1 and s ≥ 0 we have

SPQH(m, s, k) =⇒ SPH
(
m,m+ s, k + 5m

)
,

WSPQH(m, s) =⇒ WSPH(m,m+ s).

Proof. Let’s first assume that the set E admits WSPQH(m, s), i.e.

∀` ∈ N ∃c` ≥ 1 ∀j ∈ N such that ` ≥ m · j ∀0 < δ ≤ 1 ∀f ∈ H∞(Eδ) :

|f |E,j ≤
( c`
δs

)j
· 〈〈f〉〉1−m·j`

E · 〈〈f〉〉
m·j
`

Eδ,`
.

Fix ` ∈ N, j ∈ N such that ` ≥ m ·j, 0 < δ ≤ 1 and f ∈ H∞(Eδ). We combine WSPQH with proposition
6.12 to obtain

|f |E,j ≤
(

c`
(δ/17)s

)j
· 〈〈f〉〉1−m·j`

E · 〈〈f〉〉
m·j
`

Eδ/17,`
≤
(

17s · c`
δs

)j
· ‖f‖1−

m·j
`

E · (2d · `)5m·j

δm·j
· ||f ||

m·j
`

Eδ
=

=

(
17s · c` · (2d · `)5m

δm+s

)j
· ‖f‖1−

m·j
`

E · ||f ||
m·j
`

Eδ
=
(

c̃`
δm+s

)j
· ‖f‖1−

m·j
`

E · ||f ||
m·j
`

Eδ
,

where c̃` := 17s · c` · (2d · `)5m and d ≥ 1 depends solely on the choice of the set E. This proves that E
admits WSPH(m,m+ s) but also if c` ≤ c1 · `k then c̃` ≤ 17s · c1 · `k · (2d · `)5m = c̃1 · `k+5m. �

Now in order to prove the implication SPH =⇒ LMP, respectively WSPH =⇒ WLMP, we need to
do some preparations.

Lemma 7.3 [Bia las-Eggink 2, lemma 2.1]. Let p be a polynomial of degree n and z0, . . . , zn be arbitrary
points of C such that zµ 6= zν as µ 6= ν. Then for each j = 1, . . . , n we have

1
j
· p(j)(z0) =

n∑
µ=1

p(zµ)− p(z0)
zµ − z0

·

 dj−1

dzj−1

∏
ν=1,...,n
ν 6=µ

z − zν
zµ − zν


/z=z0

 .

In particular,

p′(z0) =
n∑
µ=1

p(zµ)− p(z0)
zµ − z0

·
∏

ν=1,...,n
ν 6=µ

z0 − zν
zµ − zν

 .
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Proof. Put q(z) := p(z)−p(z0)
z−z0 . It is evident that q is a polynomial of degree n− 1 and

q(z) =
n∑
j=1

1
j!
· p(j)(z0) · (z − z0)j−1.

Therefore
q(j−1)(z0) =

1
j
· p(j)(z0) for j = 1, . . . , n

and by the Lagrange interpolation formula we have for arbitrary z ∈ C

q(z) =
n∑
µ=1

q(zµ) ·
∏

ν=1,...,n
ν 6=µ

z − zν
zµ − zν

 . �

Proposition 7.4 [Bia las-Eggink 2, proposition 2.2]. Let E ⊂⊂ C, z0 ∈ E, r > 0 and n ∈ N be fixed.
Put

T = T (z0, r) := {t ∈ [0, r] : ∃z ∈ E such that |z − z0| = t} .

If there exists a constant cn > 0 such that for every polynomial q ∈ Pn(R) we have

(1) |q′(0)| ≤ cn · ||q||T ,

then for every polynomial p ∈ Pn(C) it follows that

(2) |p′(z0)| ≤ 2n · cn · ||p||E∩B(z0,r).

Proof. Consider n+ 1 Fekete extremal points t0, . . . , tn of the set T constructed as follows. Put

V (x0, . . . , xn) :=
∏

0≤µ<ν≤n

(xν − xµ).

We choose t0, . . . , tn ∈ T such that

(3) |V (t0, . . . , tn)| = max {|V (x0, . . . , xn)| : x0, . . . , xn ∈ T} .

We can assume that t0 is the smallest number of t0, . . . , tn. Observe that t0 = 0. Indeed, tν − t0 ≤ tν
for all ν = 1, . . . , n and from condition (3) we deduce that t0 = 0.

By inequality (1), the set T contains at least n + 1 points, and consequently V (t0, . . . , tn) 6= 0. For
µ = 0, 1, . . . , n consider the Lagrange polynomials

(4) Lµ(t) :=
V (t0, . . . , tµ−1, t, tµ+1, . . . , tn)

V (t0, . . . , tn)
=

∏
ν=0,...,n
ν 6=µ

t− tν
tµ − tν

.

We have ||Lµ||T = 1, as is easy to check. By inequality (1), for µ = 1, . . . , n we have∏
ν=1,...,n
ν 6=µ

tν

∏
ν=0,...,n
ν 6=µ

|tµ − tν |
= |L′µ(0)| ≤ cn · ||Lµ||T = cn.

Now choose z1, . . . , zn ∈ E ∩B(z0, r) such that |zν − z0| = tν for ν = 1, . . . , n and fix p ∈ Pn. Lemma
7.3 implies that
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|p′(z0)| =

∣∣∣∣∣∣∣
n∑
µ=1

p(zµ)− p(z0)
zµ − z0

·
∏

ν=1,...,n
ν 6=µ

z0 − zν
zµ − zν


∣∣∣∣∣∣∣ ≤ 2 · ||p||E∩B(z0,r) ·

n∑
µ=1


∏

ν=1,...,n
ν 6=µ

|z0 − zν |

∏
ν=0,...,n
ν 6=µ

|zµ − zν |

 .

It is easily seen that |zµ − zν | ≥ |tµ − tν | for each µ and ν. By the above, we obtain

|p′(z0)| ≤ 2 · ||p||E∩B(z0,r) ·
n∑
µ=1


∏

ν=1,...,n
ν 6=µ

tν

∏
ν=0,...,n
ν 6=µ

|tµ − tν |

 =

= 2 · ||p||E∩B(z0,r) ·
n∑
µ=1

|L′µ(0)| ≤ 2n · cn · ||p||E∩B(z0,r). �

Remark 7.5 [Bia las-Eggink 2, remark 2.4]. Note that inequality (2) does not imply inequality (1).
It is sufficient to consider the set E := {0} ∪ {z ∈ C : |z| = r} and z0 = 0. By Cauchy’s integral
formula, inequality (2) is satisfied for all polynomials p ∈ Pn, but the set T = {0, r} does not admit any
Markov inequality.

Note that in the proof of proposition 7.4 we did not need inequality (1) for all polynomials but only
for those of Lagrange.

Corollary 7.6 [Bia las-Eggink 2, corollary 2.5]. In proposition 7.4, it is sufficient to assume that

|L′µ(0)| ≤ cn · ||Lµ||T (z0,r) for µ = 1, . . . , n.

Corollary 7.7. If a compact set E ⊂⊂ C is connected, then it admits LMP (1, 3).

Proof. Without loss of generality we can assume that diamE ≥ 2. Now note that for each z0 ∈ E
and 0 < r ≤ 1 the set T = T (z0, r) as defined in proposition 7.4 is connected and it contains the points
0 and r. Therefore T = [0, r] and it admits the classic Markov inequality stated in theorem 1.1, i.e.

|q′(0)| ≤ 2n2

r
· ||q||T

for every polynomial q ∈ Pn(R). Consequently by proposition 7.4 we have

|p′(z0)| ≤ 4n3

r
· ||p||E∩B(z0,r)

for every polynomial p ∈ Pn(C). �

The next lemma was inspired by [Zeriahi, theorem 2.1].

Lemma 7.8 [Bia las-Eggink 2, lemma 2.7]. If p ∈ Pn and r > 0, then there exists an interval I ⊂ [0, r]
of length at least r

4n2 such that

||p||[0,r] ≤ 2 · |p(x)| for all x ∈ I.

Proof. Let x0 be a point of [0, r] such that |p(x0)| = ||p||[0,r]. Put I :=
[
x0 − r

4n2 , x0 + r
4n2

]
∩
[
0, r
]

and consider an arbitrary point x ∈ I. The mean value theorem leads to

|p(x0)− p(x)| ≤ ||p′||I · |x0 − x| ≤
r

4n2
· ||p′||[0,r].

The interval [0, r] admits the classic Markov inequality, hence

||p′||[0,r] ≤
2n2

r
· ||p||[0,r] =

2n2

r
· |p(x0)|.

From the above it follows that

|p(x0)| − |p(x)| ≤ |p(x0)− p(x)| ≤ r

4n2
· 2n2

r
· |p(x0)| = 1

2
· |p(x0)|,

and finally we have
||p||[0,r] = |p(x0)| ≤ 2 · |p(x)|. �
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Theorem 7.9 [cf. Bia las-Eggink 2, theorem 2.8; cf. Bos-Milman, theorem A]. For any compact set
E ⊂⊂ C and m, s, k ≥ 1 we have

SPH(m, s, k) =⇒ LMP(m′, k′),

WSPH(m, s) =⇒ WLMP(m′).

for any m′ > s and k′ > k + 3s.

Proof. Let’s first assume that the set E admits WSPH(m, s), i.e.

∃c0 ≥ 0 ∀` ∈ N ∃c` ≥ 1 ∀j ∈ N such that ` ≥ m · j ∀0 < δ ≤ 1 ∀f ∈ H∞(Eδ) :

|f |E,j ≤
( c`
δs

)j+c0
· ||f ||1−

m·j
`

E · ||f ||
m·j
`

Eδ
.

Without loss of generality we can assume that the sequence {c`}`∈N is increasing. Fix an arbitrary
integer a ≥ m + 1 and put ma := s·(a+c0)−m

a−m ≥ 1 and ka := (k+2s)·(a+c0)
a−m > 3. We will use proposition

3.3 to prove LMP(ma, ka+ma) respectively WLMP(ma), which for a→∞ leads to the assertion of the
theorem, because lima→∞ma = s and lima→∞(ka +ma) = k + 3s.

Hence we need to prove the assumption of proposition 3.3, i.e.

∀n ∈ N ∃c̃a,n ≥ 1 ∀z0 ∈ E ∀0 < r ≤ 1 ∀p ∈ Pn : |p′(z0)| ≤ c̃a,n
rma

· ‖p‖E∩B(z0,r)(5)

and appropriately control the coefficients c̃a,n if required. For n ∈ N we put

c̃a,n := max
{(

4 · 3s · c2a2·n
) a+c0
a−m ·

(
4n2
) s·(a+c0)

a−m , 8n3

}
.

Note that if c` ≤ c1 · `k then

c̃a,n ≤ max

{(
4 · 3s · c1 · (2a2 · n)k

) a+c0
a−m ·

(
4n2
) s·(a+c0)

a−m , 8n3

}
=

=
(

4 · 3s · c1 · (2a2)k
) a+c0
a−m · 4

s·(a+c0)
a−m · nka ,

and therefore these coefficients can be controlled as required.
We proceed to prove inequality (5). Fix arbitrarily n ∈ N, z0 ∈ E and 0 < r ≤ 1. Define T = T (z0, r)

as in proposition 7.4. Choose t0, . . . , tn ∈ T satisfying condition (3). As in the proof of proposition 7.4,
we can assume that t0 = 0. For µ = 1, . . . , n denote by Lµ the Lagrange polynomial given by definition
(4). Let Iµ be an interval of length at least r

4n2 constructed for the polynomial Lµ as in lemma 7.8.
If for every µ = 1, . . . , n there exists zµ ∈ E such that |zµ − z0| ∈ Iµ, then we use proposition 7.4.

Specifically, in this case for µ = 1, . . . , n, Iµ meets T (z0, r), say at tµ. By the classic Markov inequality
for the interval [0, r] and applying lemma 7.8 we obtain for µ = 1, . . . , n

|L′µ(0)| ≤ 2n2

r
· ||Lµ||[0,r] ≤

4n2

r
· |Lµ(tµ)| ≤ 4n2

r
· ||Lµ||T (z0,r).

Hence by proposition 7.4 and corollary 7.6 we have

|p′(z0)| ≤ 8n3

r
· ||p||E∩B(z0,r) ≤

c̃a,n
rma

· ‖p‖E∩B(z0,r)

for all polynomials p ∈ Pn as required in the assumption of proposition 3.3.
We now turn to the case where Iµ ∩ T (z0, r) = ∅ for some µ ∈ {1, . . . , n}, which implies that there

is an empty annulus around z0 of a certain minimum size. We shall have established the theorem if we
prove that in this case we have for all p ∈ Pn

(6) |p′(z0)| ≤ (2ba,n)
a+c0
a−m ·

(
rm

l
s·(a+c0)
µ

) 1
a−m

· ||p||E∩B(z0,r),
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where
ba,n := 2 · 3s · c2a2·n

and lµ is the length of Iµ. Indeed, by lemma 7.8, lµ ≥ r
4n2 and applying this to inequality (6) we obtain

|p′(z0)| ≤ (2ba,n)
a+c0
a−m ·

(
(4n2)s·(a+c0)

rs·(a+c0)−m

) 1
a−m

· ||p||E∩B(z0,r) ≤
c̃a,n
rma

· ‖p‖E∩B(z0,r),

as required.
It remains to show inequality (6) for all p ∈ Pn. For this purpose, we write [ρ0, ρ1] for the interval

Iµ. Of course, 0 < ρ0 < ρ1 ≤ r and ρ1 − ρ0 = lµ.
The rest of the proof is adapted from [Bos-Milman, theorem A].
Let ε ∈ C∞(R) be any cutoff function with the following properties:

(a) 0 ≤ ε(x) ≤ 1 for all x ∈ R,

(b) ε(x) = 1 for x ≤ 1
3
,

(c) ε(x) = 0 for x ≥ 2
3
,

and put h(z) := ε
(
|z−z0|−ρ0

lµ

)
so that h ∈ C∞(C).

Now fix arbitrarily p ∈ Pn and let q(z) :=
(
p(z)− p(z0)

)a, q ∈ Pa·n, and f(z) := h(z) · q(z). Choose
any ` ∈ N such that a2 · n ≤ ` ≤ 2a2 · n. Since T (z0, r) ∩ [ρ0, ρ0 + lµ] = ∅, we have f ∈ H∞(Eδ), where
δ := lµ

3 ≤
r
3 .

We see that

(7) ‖f‖E = ‖f‖E∩B(z0,ρ1) ≤ ‖q‖E∩B(z0,ρ1),

(8) ‖f‖Eδ = ‖f‖Eδ∩B(z0,ρ1) ≤ ‖f‖B(z0,ρ1) ≤ ‖q‖B(z0,ρ1),

and by the WSPH(m, s) we have for arbitrary j ∈ N such that j ≤ a · n ≤ `
a <

`
m

(9) |q(j)(z0)| =
∣∣∣∣∂jf∂zj (z0)

∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∂jf∂zj
∣∣∣∣∣∣∣∣
E

= |f |E,j ≤
( c`
δs

)j+c0
· ||f ||1−

m·j
`

E · ||f ||
m·j
`

Eδ
.

From inequalities (7), (8), (9) and the choice of ` and δ it follows that

|q(j)(z0)| ≤
(

3s · c`
lsµ

)j+c0
· ||q||1−

m·j
`

E∩B(z0,ρ1) · ||q||
m·j
`

B(z0,ρ1) ≤

≤
( 1

2ba,n

lsµ

)j+c0
· ||q||1−

m·j
`

E∩B(z0,r)
· ||q||

m·j
`

B(z0,r)
.(10)

Our next objective is to estimate

λ :=
( ||q||B(z0,r)

||q||E∩B(z0,r)

) 1
a·n

≥ 1.

By inequality (10), we have for any j = 1, . . . , a · n

(11) |q(j)(z0)| ≤
( 1

2ba,n

lsµ

)j+c0
· λ

a·n·m·j
` · ||q||E∩B(z0,r) ≤

( 1
2ba,n

lsµ

)j+c0
· λ

m·j
a · ||q||E∩B(z0,r)
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and for j = 0 this is trivially true too. From this, applying Taylor’s formula and the fact that lµ ≤ r ≤ 1,
we get

||q||B(z0,r) ≤
a·n∑
j=0

rj

j!
· |q(j)(z0)| ≤

a·n∑
j=0

(
1
2
ba,n

)j+c0
·
(
r

lsµ

)j
· 1
ls·c0µ

· λ
m·j
a · ||q||E∩B(z0,r) ≤

≤ 2 · (ba,n)a·n+c0 ·
(
r

lsµ

)a·n
· 1
ls·c0µ

· λm·n · ||q||E∩B(z0,r).

It follows that

λa·n =
||q||B(z0,r)

||q||E∩B(z0,r)
≤ 2 · (ba,n)a·n+c0 ·

(
r

lsµ

)a·n
· 1
ls·c0µ

· λm·n,

and consequently

λ ≤ 2 · (ba,n)
a+c0/n
a−m ·

(
r

lsµ

) a
a−m

·
(

1
ls·c0µ

) 1
(a−m)·n

.

By combining this estimate with inequality (11) we can assert that for j = 0, . . . , a · n

|q(j)(z0)| ≤
( 1

2ba,n

lsµ

)j+c0
· 2

m·j
a · (ba,n)

m·j·(1+c0/(a·n))
a−m ·

(
r

lsµ

) m·j
a−m

·
(

1
ls·c0µ

) m·j
a·(a−m)·n

· ||q||E∩B(z0,r) ≤

≤
(
ba,n
lsµ

)j+c0
· (ba,n)

m·(j+c0)
a−m ·

(
r

lsµ

) m·j
a−m

·
(

1
ls·c0µ

) m
a−m

· ||q||E∩B(z0,r) ≤

≤ (ba,n)
a·(j+c0)
a−m ·

(
rm

ls·aµ

) j
a−m

·
(

1
ls·c0µ

)1+ m
a−m

· ||q||E∩B(z0,r) =

= (ba,n)
a·(j+c0)
a−m ·

(
rm

ls·aµ

) j
a−m

·
(

1
ls·c0µ

) a
a−m

· ||q||E∩B(z0,r),

because m < a and j ≤ a · n. Specifically, for j = a we have

a! · |p′(z0)|a = |q(a)(z0)| ≤ (ba,n)
a·(a+c0)
a−m ·

(
rm

ls·aµ

) a
a−m

·
(

1
ls·c0µ

) a
a−m

· ||q||E∩B(z0,r) ≤

≤ (ba,n)
a·(a+c0)
a−m ·

(
rm

l
s·(a+c0)
µ

) a
a−m

· 2a ·
(
||p||E∩B(z0,r)

)a
,

because

q(z) =
(
p(z)− p(z0)

)a =

(
n∑
ν=1

1
ν!
· p(ν)(z0) · (z − z0)ν

)a
=
(
p′(z0) · (z − z0)

)a +O
(
|z − z0|a+1

)
.

From this it finally follows that

|p′(z0)| ≤ (ba,n)
a+c0
a−m ·

(
rm

l
s·(a+c0)
µ

) 1
a−m

· 2 · ||p||E∩B(z0,r),

which implies inequality (6). �

We have now completed the proof of the first part of our main result, which is the equivalence of
LMP and SPH, albeit with some deterioration of the constants.

Theorem 7.10 [cf. Bos-Milman, theorem A]. For any compact set E ⊂⊂ C and m, k ≥ 1 we have
the following string of implications:

LMP(m, k) =⇒ SPW(m, k) =⇒ SPQ(m, k) =⇒
=⇒ SPQH(m, 0, k) =⇒ SPH(m,m, k + 5m) =⇒ LMP(m′, k′)

for any m′ > m and k′ > k + 8m.
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Corollary 7.11 [cf. Bos-Milman, theorem A]. If in theorem 7.9 we assume that s = 1 and c0 = 0
then, regardless of the choice of the integer a > m, we have ma = 1 and therefore in the assertion we
can take m′ = 1. Consequently we have

LMP(1, k) =⇒ SPW(1, k) =⇒ SPQ(1, k) =⇒
=⇒ SPQH(1, 0, k) =⇒ SPH(1, 1, k + 5) with c0 = 0 =⇒ LMP(1, k′)

for any k′ > k + 8.

Analogous statements are true for the weak versions of these properties.
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CHAPTER VIII

JACKSON PROPERTY (JP)

Definition 8.1 [Siciak 3; cf. Pleśniak 1; cf. Zerner]. For a compact set E ⊂⊂ C we define the space
of functions on E, which can be rapidly approximated by holomorphic polynomials:

s(E) := {f ∈ C(E) : ∀` ≥ 0 lim
n→∞

n` · distE(f,Pn) = 0}

with the following Jackson norms:

|f |` := ‖f‖E + sup
n∈N

n` · distE(f,Pn) for ` ≥ 0,

|f |−1 := ‖f‖E .

Definition 8.2. A compact set E ⊂⊂ C admits the Jackson Property JP(s, v), where s, v ≥ 1, if
H∞(E)|E ⊂ s(E) and

∃c0 ≥ 0 ∀` ≥ 1 ∃c` ≥ 1 ∀0 < δ ≤ 1 ∀f ∈ H∞(Eδ) : |f|E |` ≤
( c`
δs

)`+c0
· ||f ||Eδ

and additionally c` ≤ c1 · `v. Without the last assumption we speak of the Weak Jackson Property
WJP(s). We will write that the set E admits JP, respectively WJP, if it admits JP(s, v), respectively
WJP(s), for some s, v ≥ 1.

Definition 8.3. For a fixed compact set E ⊂⊂ C and ζ /∈ E put fζ(z) := 1
ζ−z in some open

neighbourhood of the set E and extend it to a function of class C∞(C) so that fζ ∈ H∞(E).

Remark 8.4. Note that if H∞(E)|E ⊂ s(E) then the set E must be polynomially convex. Indeed if
we assume the contrary, then there exists a point ζ ∈ Ê \E. Now construct a sequence of polynomials of
best approximation for the function fζ ∈ H∞(E) as in definition 8.3, i.e. pn ∈ Pn, such that ‖fζ−pn‖E =
distE(fζ ,Pn), and subsequently let qn(z) := 1− (ζ − z) · pn(z) so that qn ∈ Pn+1. We then see that for
all z ∈ E and n ∈ N we have

|qn(z)| = |ζ − z| · |fζ(z)− pn(z)| ≤ diamE · ‖fζ − pn‖E = diamE · distE(fζ ,Pn)

and consequently, by the definition of the polynomial hull,

1 = |qn(ζ)| ≤ ‖qn‖Ê = ‖qn‖E ≤ diamE · distE(fζ ,Pn).

This demonstrates that on the set E it is not possible to approximate the function fζ using holomorphic
polynomials, not to speak of rapid approximation.

We are now going to look for ways to identify sets admitting the Jackson Property.

Theorem 8.5 Jackson’s theorem [cf. Bos-Milman, lemma 4.17; cf. Pleśniak 4; cf. Cheney;
cf. Timan; cf. Jackson]. For each interval I = [a, b] ⊂ R, a < b, there exists a constant C :=
max

{
1, π·e·(b−a)

4

}
such that

∀f ∈ C∞(C) ∀` ∈ N ∀n ∈ N : distI(f,Pn) ≤
(
C · `
n

)`
· ‖f‖I,`.
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Proof. Fix a complex smooth function f ∈ C∞(C) and `, n ∈ N. We assume that n ≥ ` since
otherwise the assertion is trivial, because in such case

distI(f,Pn) ≤ ‖f‖I ≤
(
C · `
n

)`
· ‖f‖I,`.

We perform a linear change of the variable and we split the function f into its real and imaginary
parts, i.e.

f1(x) := <f
(
a+ b+ x · (b− a)

2

)
,

f2(x) := =f
(
a+ b+ x · (b− a)

2

)
,

so that f1(x) + f2(x) · i = f
(
a+b+x·(b−a)

2

)
for x ∈ R and f1, f2 ∈ C∞(R) are real smooth functions.

By the classic Jackson theorems [Jackson, Timan, Cheney or Pleśniak 4] we have

dist[−1,1]

(
f1,Pn(R)

)
≤

(
π
2

)` · ∥∥∥f (`)
1

∥∥∥
[−1,1]

(n+ 1) · n · . . . · (n− `+ 2)
.

Therefore we can find a polynomial p1 ∈ Pn(R) with real coefficients for which we have

n` · ‖f1 − p1‖[−1,1] ≤
(π

2

)`
· n`

(n+ 1) · n · . . . · (n− `+ 2)
·
∥∥∥f (`)

1

∥∥∥
[−1,1]

=

=
(π

2

)`
· n

n+ 1
· n`−1

n · . . . · (n− `+ 2)
·
∥∥∥f (`)

1

∥∥∥
[−1,1]

≤
(π

2

)`
· `
`−1

`!
·
∥∥∥f (`)

1

∥∥∥
[−1,1]

,

because the expression n`−1

n·...·(n−`+2) (interpreted as 1 when ` = 1) diminishes when n ≥ ` increases. By

Stirling’s formula we have `! ≥
(
`
e

)` · √2π` and consequently

``−1

`!
≤ e`

` ·
√

2π`
,

which implies that

n` · ‖f1 − p1‖[−1,1] ≤
(π · e

2

)`
· 1
` ·
√

2π`
·
∥∥∥f (`)

1

∥∥∥
[−1,1]

≤
(π · e

2

)`
· 1√

2π
·
∥∥∥f (`)

1

∥∥∥
[−1,1]

.

Note that because f1 and f2 and their derivatives are real functions, we have for x ∈ [−1, 1]∣∣∣f (`)
1 (x)

∣∣∣ ≤ ∣∣∣f (`)
1 (x) + f

(`)
2 (x) · i

∣∣∣ =

∣∣∣∣∣
(
b− a

2

)`
· ∂

`f

∂z`

(
a+ b+ x · (b− a)

2

)∣∣∣∣∣ ≤
(
b− a

2

)`
·
∥∥∥∥∂`f∂z`

∥∥∥∥
I

and therefore

‖f1 − p1‖[−1,1] ≤
(
π · e · (b− a)

4n

)`
· 1√

2π
·
∥∥∥∥∂`f∂z`

∥∥∥∥
I

.

Similarly there exists a polynomial p2 ∈ Pn(R) such that

‖f2 − p2‖[−1,1] ≤
(
π · e · (b− a)

4n

)`
· 1√

2π
·
∥∥∥∥∂`f∂z`

∥∥∥∥
I

and finally we see that

distI(f,Pn) = dist[−1,1](f1 + f2 · i,Pn) ≤ ‖(f1 + f2 · i)− (p1 + p2 · i)‖[−1,1] =

= ‖(f1 − p1) + (f2 − p2) · i)‖[−1,1] ≤ ‖f1 − p1‖[−1,1] + ‖f2 − p2‖[−1,1] ≤

≤
(
π · e · (b− a)

4n

)`
·
∥∥∥∥∂`f∂z`

∥∥∥∥
I

≤
(
C · `
n

)`
· ‖f‖I,`. �
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Corollary 8.6. For any compact set E ⊂⊂ R ⊂ C we have C∞(E) ⊂ s(E) and furthermore there
exists a constant C̃ ≥ 1 such, that

∀f ∈ C∞(E) ∀` ∈ N : |f |` ≤
(
C̃ · `

)`
· f E,`.

Proof. For the interval I := convE we determine the constant C from Jackson’s theorem 8.5. For
f ∈ C∞(E) we consider an arbitrary extension f̃ ∈ C∞(C), such that f̃|E = f . Then for any ` ∈ N we
have

sup
n∈N

n` · distE(f,Pn) = sup
n∈N

n` · distE(f̃ ,Pn) ≤ sup
n∈N

n` · distI(f̃ ,Pn) ≤
(
C · `

)` · ‖f̃‖I,` < +∞.

This proves that f ∈ s(E) but also, by taking the infimum over all possible extensions f̃ ∈ C∞(C), we
obtain

|f |` = ‖f‖E + sup
n∈N

n` · distE(f,Pn) ≤

≤
(

1 +
(
C · `

)`) · inf
{
‖f̃‖I,` : f̃ ∈ C∞(C), f̃|E = f

}
≤
(
C̃ · `

)`
· f E,`,

where C̃ := 1 + C. �

Corollary 8.7. Every interval I = [a, b] ⊂ R admits JP(1, 2).

Proof. Fix 0 < δ ≤ 1, f ∈ H∞(Iδ) and ` ∈ N. Cauchy’s integral formula implies that for each z ∈ I
we have

f (`)(z) =
`!

2πi
·
∫
∂B(z,δ)

f(ζ)
(ζ − z)`+1

dζ

and therefore

|f (`)(z)| ≤ `!
2π
· ‖f‖Iδ
δ`+1

· 2π · δ =
`!
δ`
· ‖f‖Iδ ,

‖f‖I,` = ‖f‖I + ‖f (`)‖I ≤
(

1 +
`!
δ`

)
· ‖f‖Iδ ≤

2``

δ`
· ‖f‖Iδ .

Consequently corollary 8.6 leads us to conclude that

|f|I |` ≤
(
C̃ · `

)`
· f I,` =

(
C̃ · `

)`
· ‖f‖I,` ≤

(
C̃ · `

)`
· 2``

δ`
· ‖f‖Iδ ≤

(
2C̃ · `2

δ

)`
· ‖f‖Iδ .

Finally for any ` ≥ 1, not necessarily integer, we obtain

|f|I |` ≤ |f|I |int(`+1) ≤

(
2C̃ · (`+ 1)2

δ

)`+1

· ‖f‖Iδ ≤

(
8C̃ · `2

δ

)`+1

· ‖f‖Iδ . �

Corollary 8.8. Every compact set E ⊂⊂ R ⊂ C admits JP(1, 6).

Proof. Fix 0 < δ ≤ 1 and f ∈ H∞(Eδ). Corollary 8.6 and proposition 6.12 imply that H∞(E) ⊂
C∞(E) ⊂ s(E) and for all ` ∈ N we have

|f|E |` ≤
(
C̃ · `

)`
· f E,` ≤

(
C̃ · `

)`
· 〈〈f〉〉E,` ≤

(
C̃ · `

)`
· 〈〈f〉〉Eδ/17,` ≤

≤

(
C̃ · `

)`
·
(
2d · `

)5·`
δ`

· ||f ||Eδ ≤

(
C̃ · 25 · d5 · `6

δ

)`
· ||f ||Eδ ,

where d ≥ 1 is the absolute constant from proposition 6.8 on cutoff functions. Finally for any ` ≥ 1, not
necessarily integer, we obtain

|f|E |` ≤ |f|E |int(`+1) ≤

(
C̃ · 25 · d5 · (`+ 1)6

δ

)`+1

· ||f ||Eδ ≤

(
C̃ · 211 · d5 · `6

δ

)`+1

· ||f ||Eδ . �
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Lemma 8.9. For n, ` ∈ N, n ≥ `, put

ϕn,` := n` ·
∞∑

j=n−`

j!
(j + `+ 1)!

.

Then for each such n, ` we have ϕn,` ≤ ``

`·`! .

Proof. Note that

j!
(j + `)!

− (j + 1)!
(j + `+ 1)!

=
j! · (j + `+ 1)− j! · (j + 1)

(j + `+ 1)!
=

j! · `
(j + `+ 1)!

and consequently

ϕn,` = n` ·
∞∑

j=n−`

1
`
·
(

j!
(j + `)!

− (j + 1)!
(j + `+ 1)!

)
=
n`

`
· (n− `)!

n!
.

The latter expression decreases when n increases and therefore it attains its maximum when n = `. �

Proposition 8.10. Jackson’s theorem for the complex ball. Consider a ball B := B(z0, r),
where z0 ∈ C, r > 0, and an arbitrary function f ∈ A∞(B). Then we have f|B ∈ s(B) and furthermore
the Jackson norms of the restriction f|B can be estimated as follows:

∀` ∈ N : |f|B |` ≤ (c · `)`+1 · ‖f‖B,`+1,

where c := max{2, r}. Additionally, provided that f ∈ H∞(Bδ) with some 0 < δ ≤ 1, we have

∀` ≥ 1 : |f|B |` ≤
(
c · `
δ

)`+1

· ‖f‖Bδ .

Proof. Fix ` ∈ N. By developing the function f into a Taylor series around the point z0 we obtain
for all each point z ∈ intB in the interior of the ball B

f(z) =
∞∑
j=0

aj · (z − z0)j ,

f (`+1)(z) =
∞∑

j=`+1

aj ·
j!

(j − `− 1)!
· (z − z0)j−`−1 =

∞∑
j=0

aj+`+1 ·
(j + `+ 1)!

j!
· (z − z0)j .

We put ε := 0 and apply Cauchy’s integral formula to both series to obtain

aj =
1

2πi
·
∫
∂Bε

f(ζ)
(ζ − z0)j+1

dζ,

aj+`+1 ·
(j + `+ 1)!

j!
=

1
2πi
·
∫
∂B

f (`+1)(ζ)
(ζ − z0)j+1

dζ.

This implies that for each j ∈ N we have

(1) |aj | ≤
1

2π
·
∫
∂Bε

‖f‖Bε
(r + ε)j+1

|dζ| = ‖f‖Bε
(r + ε)j

,

(2) |aj+`+1| ≤
j!

(j + `+ 1)!
· 1

2π
·
∫
∂B

‖f (`+1)‖B
rj+1

|dζ| = j!
(j + `+ 1)!

· ‖f
(`+1)‖B
rj

.
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Next put pn(z) :=
∑n
j=0 aj · (z − z0)j , pn ∈ Pn, and consider the remainder sn(z) := f(z) − pn(z),

sn ∈ A∞(B). Obviously for each z ∈ intB we have |sn(z)| ≤
∑∞
j=n+1 |aj | · rj so this estimate must hold

on the boundary ∂B too. Therefore we can estimate the Jackson norms as follows:

|f|B |` = ‖f‖B + sup
n∈N

n` · distB(f,Pn) ≤ ‖f‖B + sup
n∈N

n` · ‖sn‖B ≤ ‖f‖B + sup
n∈N

n` · ∞∑
j=n+1

|aj | · rj
 .

If n ≥ ` then we can apply inequality (2) and lemma 8.9 to obtain

n` ·
∞∑

j=n+1

|aj | · rj = n` ·
∞∑

j=n−`

|aj+`+1| · rj+`+1 ≤ n` ·
∞∑

j=n−`

j!
(j + `+ 1)!

· ‖f (`+1)‖B · r`+1 =

= ϕn,` · ‖f (`+1)‖B · r`+1 ≤ r · (r · `)` · ‖f (`+1)‖B .

If n < ` then we use inequalities (1) with ε = 0 and (2) to obtain

n` ·
∞∑

j=n+1

|aj | · rj = n` ·

 ∑̀
j=n+1

|aj | · rj +
∞∑
j=0

|aj+`+1| · rj+`+1

 ≤
≤ `` ·

 ∑̀
j=n+1

‖f‖B +
∞∑
j=0

j!
(j + `+ 1)!

· ‖f (`+1)‖B · r`+1

 ≤
≤ `` · ` · ‖f‖B + ϕ`,` · ‖f (`+1)‖B · r`+1 ≤ ``+1 · ‖f‖B + r · (r · `)` · ‖f (`+1)‖B .

In either case we conclude that

|f|B |` ≤
(
1 + ``+1

)
· ‖f‖B + r · (r · `)` · ‖f (`+1)‖B ≤

≤ (c · `)`+1 ·
(
‖f‖B + ‖f (`+1)‖B

)
= (c · `)`+1 · ‖f‖B,`+1 < +∞.

Additionally, if f ∈ H∞(Bδ) with some 0 < δ ≤ 1, then we use Cauchy’s integral formula to obtain
inequality (1) with ε := δ. Consequently we have

∞∑
j=n+1

|aj | · rj ≤
∞∑

j=n+1

(
r

r + δ

)j
· ‖f‖Bδ =

(
r

r + δ

)n+1

· 1
1− r

r+δ

· ‖f‖Bδ =
(

r

r + δ

)n
· r
δ
· ‖f‖Bδ ,

sup
n∈N

n` · ∞∑
j=n+1

|aj | · rj
 ≤ sup

n∈R+

(
n` ·

(
r

r + δ

)n
· r
δ
· ‖f‖Bδ

)
=

(
`

e · log r+δ
r

)`
· r
δ
· ‖f‖Bδ

because for a, b > 0
sup
n∈R+

na · e−b·n =
( a

b · e

)a
.

Since for each x ≥ 1 we have
(
1 + 1

r·x
)x ≥ 1 + 1

r , by taking x = 1
δ we see that 1 + δ

r ≥
(
1 + 1

r

)δ and it
is also easy to verify that log r+δ

r ≥ δ · log(1 + 1
r ) ≥ 4

5 · δ ·min{ 1
2 ,

1
r}. This implies that

|f|B |` ≤ ‖f‖B +

(
`

e · log r+δ
r

)`
· r
δ
· ‖f‖Bδ ≤ ‖f‖B +

(
`

e · 4
5 · δ ·min

{
1
2 ,

1
r

})` · r
δ
· ‖f‖Bδ =

= ‖f‖B +
(

5c · `
4e · δ

)`
· r
δ
· ‖f‖Bδ ≤ ‖f‖B +

( 1
2c · `
δ

)`
· c
δ
· ‖f‖Bδ ≤

(
1 +

( 1
2c · `
δ

)`)
· c
δ
· ‖f‖Bδ ≤

≤

((
1 + 1

2c
)
· `

δ

)`
· c
δ
· ‖f‖Bδ ≤

(
c · `
δ

)`
· c
δ
· ‖f‖Bδ ≤

(
c · `
δ

)`+1

· ‖f‖Bδ . �
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Corollary 8.11. Every ball admits JP(1, 1).

Our goal will now be to establish a general version of Jackson’s theorem in the complex plane.

Lemma 8.12. For all ζ /∈ E ⊂⊂ C and n ∈ Z+ we have

1
Φn+1(ζ) ·

(
dist(ζ, E) + diamE

) ≤ distE(fζ ,Pn) ≤ 1
Φn+1(ζ) · dist(ζ, E)

.

Proof. Fix n ∈ N and take an arbitrary polynomial q ∈ Pn+1 such that ‖q‖E = 1 and q(ζ) 6= 0.
Define p(z) := q(ζ)−q(z)

q(ζ)·(ζ−z) so that p ∈ Pn. Then we obtain

distE(fζ ,Pn) ≤ ‖fζ − p‖E = sup
z∈E
|fζ(z)− p(z)| =

= sup
z∈E

∣∣∣∣ q(z)
q(ζ) · (ζ − z)

∣∣∣∣ ≤ ‖q‖E
|q(ζ)| · infz∈E |ζ − z|

=
1

|q(ζ)| · dist(ζ, E)
.

We take the infimum over such q ∈ Pn+1 to arrive at distE(fζ ,Pn) ≤ 1
Φn+1(ζ)·dist(ζ,E) .

On the other hand for fixed n ∈ N find p ∈ Pn such that distE(fζ ,Pn) = ‖fζ − p‖E . Define
q(z) := 1− p(z) · (ζ − z) so that q ∈ Pn+1. We see that

‖q‖E = sup
z∈E
|1− p(z) · (ζ − z)| ≤ sup

z∈E
|ζ − z| · sup

z∈E
|fζ(z)− p(z)| ≤

(
dist(ζ, E) + diamE

)
· distE(fζ ,Pn)

and hence

Φn+1(ζ) ≥ |q(ζ)|
‖q‖E

≥ 1(
dist(ζ, E) + diamE

)
· distE(fζ ,Pn)

. �

Definition 8.13. For a fixed compact set E ⊂⊂ C, n ∈ Z+ and 0 ≤ t < +∞ let

φn(t) := inf
z∈∂Et

Φn(z),

φE(t) := inf
z∈∂Et

ΦE(z).

Here and further in this chapter we denote by ∂Et the set {z ∈ C : dist(z, E) = t}, i.e. the boundary
of the interior of the set Et, which can be a slightly bigger set than only the boundary of Et.

Remark 8.14. Note that for t > 0 the functions φn and φE are continuous or equal to +∞. Fur-
thermore we have for all n0 ≤ n and t0 ≤ t

φn0(t0) ≤ φn0(t) ≤ φn(t) ≤
(
φE(t)

)n
,

where the first inequality follows from the maximum principle for subharmonic functions, applied to the
function log Φn0 , and the latter two inequalities follow straight from the definitions.

Definition 8.15. For a compact set E ⊂⊂ C and δ > 0 denote by K(E, δ) a compact neighbourhood
constructed as follows. First we cut up the entire complex plane into closed squares of size δ×δ, starting
at the origin of the plane. Next we select all squares having a non-empty intersection with the set E
and by K(E, δ) we denote the sum of those squares.

Clearly we have E ⊂ K(E, δ) ⊂ Eδ·√2. Also it is easy to see that the set K(E, δ) consists of at most(
diamE
δ + 2

)2
squares and therefore the length of its border ∂K(E, δ) is at most(

diamE

δ
+ 2
)2

· 4δ =
4 · (diamEδ)2

δ
.

The following results were inspired by the proof of Runge’s theorem as given by [Gaier, chapter II
§3 and chapter III §1]. They show that there is a direct relationship between the approximation of
holomorphic functions on a compact set and the behavior of its extremal function.
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Proposition 8.16. For any compact set E ⊂⊂ C, 0 < δ ≤ 1 and f ∈ H∞(Eδ) we have

∀1
2
≤ b < 1 ∀n ∈ N : distE(f,Pn) ≤ c · ‖f‖Eδ

(1− b) · δ2 · φn+1(b · δ)
,

where the constant c := 28
π · (2 + diamE)2 depends only on the set E.

Proof. Fix 1
2 ≤ b < 1 and n ∈ N. If φn+1(b · δ) = +∞ then the set E consists of n+ 1 or less points

and distE(f,Pn) = 0, which finishes the proof. Otherwise find a δ̃ such that the number (1−b)·δ
4·δ̃

is an
integer and furthermore

0 < δ̃ ≤ (1− b) · δ
4 · φn+1(b · δ)

.

Let Γ be the boundary ∂K
(
Eb·δ,

1−b
4 · δ

)
, with proper orientation, and cut it up into equal intervals

Γj , each of length δ̃, so that Γ =
⋃
j Γj , with j running over a finite index set. As K

(
Eb·δ,

1−b
4 · δ

)
⊂

Eb·δ+ 1−b
4 ·δ·

√
2 ⊂ E 1+b

2 ·δ
we see that Γ ⊂ E 1+b

2 ·δ
\ intEb·δ while for the length of Γ, denoted m(Γ), we

have ∑
j

δ̃ = m(Γ) ≤ 4 · (diamEδ)2

1−b
4 · δ

≤ 4π · c
7 · (1− b) · δ

.

For z ∈ E put gz(ζ) := f(ζ)
ζ−z , which is a holomorphic function in some open neighbourhood of the

set Eδ \ {z}. Let ζ0, ζ1 ∈ Γj for some j. Then the entire interval I := [ζ0, ζ1] lies in Γj and of course
dist(z, I) ≥ b · δ. Since g′z(ζ) = f ′(ζ)

ζ−z −
f(ζ)

(ζ−z)2 we have for all ζ ∈ I, thanks to Cauchy’s integral formula
applied to f ′ ∈ H∞(Eδ)

|g′z(ζ)| ≤
‖f ′‖E 1+b

2 ·δ

b · δ
+
‖f‖E 1+b

2 ·δ

(b · δ)2 ≤ ‖f‖Eδ
1−b

2 · b · δ2
+
‖f‖Eδ
(b · δ)2 =

(1 + b) · ‖f‖Eδ
(1− b) · b2 · δ2

≤ 6 · ‖f‖Eδ
(1− b) · δ2

.

This leads us to ∣∣∣∣ f(ζ1)
ζ1 − z

− f(ζ0)
ζ0 − z

∣∣∣∣ = |gz(ζ1)− gz(ζ0)| =
∣∣∣∣∫
I

g′z(ζ) dζ
∣∣∣∣ ≤ ∫

I

|g′z(ζ)| |dζ| ≤

≤ 6 · ‖f‖Eδ
(1− b) · δ2

· |ζ1 − ζ0| ≤
6 · ‖f‖Eδ

(1− b) · δ2
· δ̃ ≤ 6 · ‖f‖Eδ

4δ · φn+1(b · δ)
.

We now see that for all z ∈ E, all j and arbitrarily selected points ζj ∈ Γj we have∣∣∣∣∣ 1
2πi
·
∫

Γj

f(ζ)
ζ − z

dζ − 1
2πi
·
∫

Γj

f(ζj)
ζj − z

dζ

∣∣∣∣∣ ≤ 1
2π
·
∫

Γj

∣∣∣∣ f(ζ)
ζ − z

− f(ζj)
ζj − z

∣∣∣∣ |dζ| ≤
≤ 1

2π
·
∫

Γj

6 · ‖f‖Eδ
4δ · φn+1(b · δ)

|dζ| = 3 · ‖f‖Eδ · δ̃
4π · δ · φn+1(b · δ)

.

By summing over j we obtain∣∣∣∣ 1
2πi
·
∫

Γ

f(ζ)
ζ − z

dζ −R(z)
∣∣∣∣ ≤∑

j

3 · δ̃ · ‖f‖Eδ
4π · δ · φn+1(b · δ)

=
3 ·m(Γ) · ‖f‖Eδ

4π · δ · φn+1(b · δ)
,

where we denote

R(z) :=
∑
j

(
1

2πi
·
∫

Γj

f(ζj)
ζj − z

dζ

)
=
∑
j

cj
ζj − z

=
∑
j

cj · fζj (z),

where in turn cj := 1
2πi · f(ζj) ·

∫
Γj
dζ and hence |cj | ≤ 1

2π · ‖f‖Eδ · δ̃. Because by Cauchy’s integral

formula we have f(z) = 1
2πi ·

∫
Γ
f(ζ)
ζ−z dζ for all z ∈ E, we now have found a rational function R, which
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approximates the function f uniformly on the set E (and actually in a certain large neighbourhood as
well):

‖f −R‖E ≤
3 ·m(Γ) · ‖f‖Eδ

4π · δ · φn+1(b · δ)
.

Simultaneously by virtue of lemma 8.12 and by the minimum principle we have

distE(R,Pn) ≤
∑
j

|cj | · distE(fζj ,Pn) ≤
∑
j

‖f‖Eδ · δ̃
2π · Φn+1(ζj) · dist(ζj , E)

≤

≤
∑
j

‖f‖Eδ · δ̃
2π · φn+1(b · δ) · b · δ

=
‖f‖Eδ ·m(Γ)

2π · φn+1(b · δ) · b · δ
,

because dist(ζj , E) ≥ b · δ. Consequently, since 1
b ≤ 2, we conclude that

distE(f,Pn) ≤ ‖f −R‖E + distE(R,Pn) ≤ 7 ·m(Γ) · ‖f‖Eδ
4π · δ · φn+1(b · δ)

≤ c · ‖f‖Eδ
(1− b) · δ2 · φn+1(b · δ)

. �

Corollary 8.17. For any compact set E ⊂⊂ C, 0 < δ ≤ 1 and f ∈ H∞(Eδ) we have

lim sup
n→∞

n
√

distE(f,Pn) ≤ 1
φE(δ)

.

Proof. Proposition 8.16 implies that for any 1
2 ≤ b < 1 we have

lim sup
n→∞

n
√

distE(f,Pn) ≤ lim sup
n→∞

1
n
√
φn(b · δ)

= lim sup
n→∞

sup
z∈∂Eb·δ

1
n
√

Φn(z)
= lim sup

n→∞

1
n
√

Φn(zn)

for some sequence {zn}n∈N ⊂ ∂Eb·δ. We select a subsequence realizing the last supremum such that
zn → z0 ∈ ∂Eb·δ and then we see that

lim sup
n→∞

1
n
√

Φn(zn)
= lim sup

n→∞

1
n
√

Φn(z0)
=

1
ΦE(z0)

≤ sup
z∈∂Eb·δ

1
ΦE(z)

=
1

φE(b · δ)
.

Finally we take the limit for b→ 1 and note that the function φE is continuous or equal to +∞. �

Definition 8.18. For a compact set E ⊂⊂ C and ρ ≥ 1 we denote the level sets of the extremal
function as follows:

C(E, ρ) := {z ∈ C : ΦE(z) = ρ} = {z ∈ C : gE(z) = log ρ}.

Note that for convenience we extend Green’s function to the entire complex plane by putting gE(z) := 0
for all z ∈ Ê.

Remark 8.19 [Gaier, chapter II §3.A theorem 1]. A more precise version of the previous corollary
is obviously well known. If the set E ⊂⊂ C is not polar and for f ∈ H∞(E) we have

ρ := sup
{
% : ∃f̃ ∈ H∞

(
Ĉ(E, %)

)
such that f̃|E = f|E

}
> 1,

then
lim sup
n→∞

n
√

distE(f,Pn) =
1
ρ
.

Corollary 8.20. For any compact set E ⊂⊂ C we have H∞(E)|E ⊂ s(E) if and only if it is
polynomially convex.

Proof. The implication (=⇒) is the subject of remark 8.4.
Conversely, if the set E is polynomially convex and f ∈ H∞(E) then there exists a δ > 0 such that

f ∈ H∞(Eδ). From definitions 1.10 and 8.13 it follows that φE(δ) > 1 and therefore by corollary 8.17
we have

lim sup
n→∞

n
√

distE(f,Pn) < 1,

which implies that f|E ∈ s(E). �
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Lemma 8.21. For any L-regular compact set E ⊂⊂ C, ζ ∈ E1 \ Ê, 1 < ρ ≤ ΦE(ζ) and n ∈ Z+ we
have

distE(fζ ,Pn) ≤ c · (n+ 1)
dist

(
C(E, ρ), E

)
· dist(ζ, E)

·
(

ρ

ΦE(ζ)

)n+1

,

where c ≥ 1 depends only on the set E.

Proof. We put
d := max

z∈C(E,‖ΦE‖E1)
dist(z, E)

and c := 1 + d + diamE, which depend only on the set E. Fix ζ ∈ E1 \ Ê, 1 < ρ ≤ ΦE(ζ), n ∈ Z+

and consider any η ∈ Ed \ E. Note that for the Lagrange interpolation polynomial with knots in n+ 1
Fekete extremal points

{
z

(n)
j

}
j=0,...,n

⊂ E and ωn(z) :=
∏n
j=0

(
z − z(n)

j

)
we have

Lnfη(z) =
ωn(η)− ωn(z)
ωn(η) · (η − z)

.

This is true because clearly Ln ∈ Pn and for j = 0, ..., n we have ωn
(
z

(n)
j

)
= 0 and hence

Lnfη

(
z

(n)
j

)
=

1

η − z(n)
j

= fη

(
z

(n)
j

)
.

Consequently, applying the properties of Lagrange interpolation polynomials discussed in remark 1.8,
we see that for all z ∈ E we have∣∣∣∣ωn(z)

ωn(η)

∣∣∣∣ = |1− (η − z) · Lnfη(z)| ≤ 1 +
(
dist(η,E) + diamE

)
· (n+ 1) · ||fη||E ≤

≤ 1 + (d+ diamE) · (n+ 1) · 1
dist(η,E)

≤ c · (n+ 1)
dist(η,E)

.

Now put hn(θ) := log |ωn(θ)| − (n+ 1) · gE(θ), which is a harmonic function on C \ Ê, bounded when
θ →∞. For any θ ∈ C(E, ρ) ⊂ Ed \ Ê and z ∈ E we have

|ωn(θ)| ≥ dist (θ,E) · |ωn(z)|
c · (n+ 1)

≥
dist

(
C(E, ρ), E

)
· |ωn(z)|

c · (n+ 1)
,

hn(θ) ≥ log

(
dist

(
C(E, ρ), E

)
· |ωn(z)|

c · (n+ 1)

)
− (n+ 1) · log ρ.

The L-regularity of the set E implies that the level set C(E, ρ) is the boundary of the open domain
Ω := {z ∈ C : ΦE(z) > ρ} and ζ ∈ Ω̄. Therefore the minimum principle for harmonic functions leads
us to

hn(ζ) ≥ log

(
dist

(
C(E, ρ), E

)
· |ωn(z)|

c · (n+ 1)

)
− (n+ 1) · log ρ

and this then implies that

log |ωn(ζ)| ≥ log

(
dist

(
C(E, ρ), E

)
· |ωn(z)|

c · (n+ 1)

)
+ (n+ 1) ·

(
gE(ζ)− log ρ

)
,

∣∣∣∣ωn(z)
ωn(ζ)

∣∣∣∣ ≤ c · (n+ 1)
dist

(
C(E, ρ), E

) · ( ρ

ΦE(ζ)

)n+1

.

Returning to the Lagrange interpolation polynomial we obtain for all z ∈ E

|fζ(z)− Lnfζ(z)| =
∣∣∣∣ ωn(z)
ωn(ζ) · (ζ − z)

∣∣∣∣ ≤ c · (n+ 1)
dist

(
C(E, ρ), E

) · ( ρ

ΦE(ζ)

)n+1

· 1
|ζ − z|

and ultimately

distE(fζ ,Pn) ≤ ||fζ − Lnfζ ||E ≤
c · (n+ 1)

dist
(
C(E, ρ), E

)
· dist(ζ, E)

·
(

ρ

ΦE(ζ)

)n+1

. �
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Lemma 8.22. Assume that a polynomially convex compact set E ⊂⊂ C admits  LS(s) and HCP(k)
for some s, k ≥ 1, i.e. there exist a1, a2 ≥ 1 such that for all z ∈ E1

1
a1
· dist(z, E)s ≤ gE(z) ≤ a2 · dist(z, E)1/k.

Then there exist c0, c1 ≥ 1 dependent only on the set E such that

∀` ≥ 1 ∀0 < t ≤ 1 sup
n∈N

n`

φn(t)
≤
(
c1 · `
ts

)`+c0
.

Proof. Fix ` ≥ 1 and 0 < t ≤ 1. By lemma 8.21 for arbitrary ζ ∈ ∂Et, ρ :=
√

ΦE(ζ) = egE(ζ)/2 > 1
and n ∈ N we have

distE(fζ ,Pn−1) ≤ c · n
dist

(
C(E, ρ), E

)
· t
·
(

ρ

ΦE(ζ)

)n
,

where c ≥ 1 depends only on the set E. We combine this with the result of lemma 8.12 to obtain

n`

Φn(ζ)
≤
(
dist(ζ, E) + diamE

)
· distE(fζ ,Pn−1) · n` ≤ c̃

dist
(
C(E, ρ), E

)
· t
· n`+1 ·

(
1
ρ

)n
≤

≤ c̃

dist
(
C(E, ρ), E

)
· t
·
(

`+ 1
e · log ρ

)`+1

≤ c̃

dist
(
C(E, ρ), E

)
· t
·
(

2`
gE(ζ)

)`+1

,

where c̃ := (1 + diamE) · c, because for a, b > 0

sup
n∈R+

na · e−b·n =
( a

b · e

)a
.

By the assumption HCP(k) we know that for all z ∈ C(E, ρ) we have log ρ = gE(z) ≤ a2 · dist(z, E)1/k

and therefore
1

dist
(
C(E, ρ), E

) ≤ ( a2

log ρ

)k
=
(

2a2

gE(ζ)

)k
.

On the other hand the assumption  LS(s) tells us that

ts

a1
=

1
a1
· dist(ζ, E)s ≤ gE(ζ),

so we can combine these estimates to obtain

n`

Φn(ζ)
≤ c̃

t
·
(

2a2

gE(ζ)

)k
·
(

2`
gE(ζ)

)`+1

≤ c̃

t
·
(

2a1 · a2

ts

)k
·
(

2a1 · `
ts

)`+1

≤
(
c1 · `
ts

)`+c0
,

where c0 := k + 2 and c1 := c̃ · 2a1 · a2 depend only on the set E.
Finally we conclude that

sup
n∈N

n`

φn(t)
= sup
n∈N

sup
ζ∈∂Et

n`

Φn(ζ)
≤
(
c1 · `
ts

)`+c0
. �

Proposition 8.23. For any compact set E ⊂⊂ C and s, v ≥ 1 the following two conditions are
equivalent:

WJP(s) i.e. ∃c0 ≥ 0 ∀` ≥ 1 ∃c` ≥ 1 ∀0 < δ ≤ 1 ∀f ∈ H∞(Eδ) :

|f|E |` ≤
( c`
δs

)`+c0
· ||f ||Eδ ,(i)



MARKOV’S INEQUALITY IN THE COMPLEX PLANE 55

∃c̃0 ≥ 0 ∀` ≥ 1 ∃c̃` ≥ 1 ∀0 < t ≤ 1 ∀n ∈ N :
n`

φn+1(t)
≤
(
c̃`
ts

)`+c̃0
.(ii)

Furthermore we have c` ≤ c1 · `v for all ` ≥ 1, i.e. the set E admits JP(s, v), if and only if c̃` ≤ c̃1 · `v
for all ` ≥ 1.

Proof. (i)=⇒(ii) Fix 0 < t ≤ 1 and arbitrary ζ ∈ ∂Et. Let δ := t
2 and fζ ∈ H∞(Eδ) as in definition

8.3. Then by the assumption we have for all ` ≥ 1 and n ∈ N

n` · distE(fζ ,Pn) ≤ |f|E |` ≤
( c`
δs

)`+c0
· ||fζ ||Eδ =

(
2s · c`
ts

)`+c0
· 2
t
≤
(

2s · c`
ts

)`+c0+1

.

Lemma 8.12 implies that

n`

Φn+1(ζ)
≤
(
dist(ζ, E) + diamE

)
· n` · distE(fζ ,Pn) ≤

(
c̃`
ts

)`+c̃0
,

where c̃0 := c0 + 1 and c̃` := (1 + diamE) · 2s · c` depend only on the set E. Therefore, since ζ ∈ ∂Et
was arbitrary, we conclude that

n`

φn+1(t)
= sup
ζ∈∂Et

n`

Φn+1(ζ)
≤
(
c̃`
ts

)`+c̃0
.

Furthermore if c` ≤ c1 · `v for all ` ≥ 1, then we have also c̃` ≤ (1 + diamE) · 2s · c1 · `v = c̃1 · `v.
(i)⇐=(ii) Fix ` ≥ 1, 0 < δ ≤ 1 and f ∈ H∞(Eδ). We now apply proposition 8.16 with b := 1

2 and
t := b · δ to obtain for any n ∈ N

n` · distE(f,Pn) ≤ c · n` · ‖f‖Eδ
(1− b) · δ2 · φn+1(b · δ)

=
2c
δ2
· n`

φn+1(t)
· ‖f‖Eδ ≤

2c
δ2
·
(
c̃`
ts

)`+c̃0
· ‖f‖Eδ =

=
2c
δ2
·
(

2s · c̃`
δs

)`+c̃0
· ‖f‖Eδ ≤

(
c · 2s · c̃`

δs

)`+c̃0+2

· ‖f‖Eδ .

From this it follows that

|f|E |` = ‖f‖E + sup
n∈N

n` · distE(f,Pn) ≤
( c`
δs

)`+c0
· ||f ||Eδ ,

where c0 := c̃0 + 2 and c` := 1 + c · 2s · c̃` depend only on the set E. Furthermore if c̃` ≤ c̃1 · `v for all
` ≥ 1, then we have also c` ≤ 1 + c · 2s · c̃1 · `v ≤ c1 · `v. �

Theorem 8.24 Jackson’s theorem in the complex plane. Any polynomially convex compact
set E ⊂⊂ C admitting  LS(s) and HCP, where s ≥ 1, admits JP(s, 1).

Proof. This is an immediate consequence of lemma 8.22, remark 8.14 and proposition 8.23. �

Remark 8.25. In [Newman, lemma 4] an estimate equivalent to JP(1, 1) with c0 = 2 was proven for
all simply connected bounded regions with boundaries that are Jordan curves of class C1+δ.

Proposition 8.26. For any compact set E ⊂⊂ C and s, s′, v ≥ 1 such that s′ > s we have

JP(s, v) =⇒ WJP(s) =⇒  LS(s′),

JP(s, 1) =⇒  LS(s).

Proof. The implication JP(s, v) =⇒WJP(s) follows straight from definition 8.2.
If we assume that the set E admits WJP(s) then proposition 8.23 implies that

∃c̃0 ≥ 0 ∀` ≥ 1 ∃c̃` ≥ 1 ∀0 < t ≤ 1 ∀n ∈ N :
n`

φn+1(t)
≤
(
c̃`
ts

)`+c̃0
.
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From this it follows that for arbitrary 0 < t ≤ 1, ζ ∈ ∂Et, n ∈ N and ` ≥ 1 we have

gE(ζ) = log ΦE(ζ) ≥ log n+1
√

Φn+1(ζ) ≥ log n+1
√
φn+1(t) ≥ 1

n+ 1
· log

(
n` ·

(
ts

c̃`

)`+c̃0)
.

Specifically by taking n ∈ N such that

e ·
(
c̃`
ts

)1+c̃0/`

≤ n < e ·
(
c̃`
ts

)1+c̃0/`

+ 1

we find that

gE(ζ) ≥ 1
n+ 1

· log e` ≥ `

e ·
(
c̃`
ts

)1+c̃0/`

+ 2
≥

≥ `

e · c̃ 1+c̃0/`
` + 2

· ts·(1+c̃0/`) =
`

e · c̃ 1+c̃0/`
` + 2

· dist(ζ, E)s·(1+c̃0/`)

and by taking ` sufficiently large, we obtain  LS(s′) for any s′ > s.
Finally if we assume additionally that c̃` ≤ c̃1 · `, i.e. the set E admits JP(s, 1), then we can take the

limit of the last estimate for `→∞ to obtain

gE(ζ) ≥ lim
`→∞

`

e · c̃ 1+c̃0/`
` + 2

· dist(ζ, E)s·(1+c̃0/`) ≥ lim
`→∞

`

e · (c̃1 · `)1+c̃0/` + 2
· dist(ζ, E)s·(1+c̃0/`) =

= lim
`→∞

1
e · c̃1 · (c̃1 · `)c̃0/` + 2/`

· dist(ζ, E)s·(1+c̃0/`) =
1

e · c̃1
· dist(ζ, E)s. �

Proposition 8.27. Any compact set E ⊂⊂ R admits  LS(1).

Proof. Fix z ∈ E1 \ E and write z = x+ y · i where x, y ∈ R. We denote

a := min
ζ∈E
|ζ − x|, b := 1 + max

ζ∈E
|ζ − x| > a,

c := 2 + diamE ≥ b, d := dist(z, E) =
√
a2 + y2 ≤ 1 < c,

and observe that c is independent of the choice of z. Consider the mapping

ψ : C→ C ψ(ζ) :=
(b2 + a2)/2− (ζ − x)2

(b2 − a2)/2
and note that ψ(E) ⊂ I := [−1,+1] but

ψ(z) =
(b2 + a2)/2− (y · i)2

(b2 − a2)/2
=
b2 + a2 + 2y2

b2 − a2
= 1 + 2 · a

2 + y2

b2 − a2
= 1 + 2 · d2

b2 − a2
> 1.

Now if p ∈ Pn with n ∈ N and ||p||I ≤ 1 then p ◦ ψ ∈ P2n and ||p ◦ ψ||E ≤ 1. Therefore

ΦE(z) = sup
{

n
√
|p(z)| : n ∈ N, p ∈ Pn, ||p||E ≤ 1

}
≥

≥ sup
{

2n
√
|p ◦ ψ(z)| : n ∈ N, p ∈ Pn, ||p||I ≤ 1

}
=
√

ΦI
(
ψ(z)

)
.

Because of the fact that Ψ(ζ) := 1
2 ·
(
ζ + 1

ζ

)
is a conformal mapping of the exterior of the unit ball onto

the exterior of the line segment I, theorem 1.11.c leads us to

ΦI(ζ) = |Ψ−1(ζ)| = ζ +
√
ζ2 − 1

for all ζ ∈ R such that ζ ≥ 1. Finally we see that

ΦE(z) ≥
√

ΦI
(
ψ(z)

)
=
√
ψ(z) +

√
ψ(z)2 − 1 =

=

√√√√1 + 2 · d2

b2 − a2
+

√(
1 + 2 · d2

b2 − a2

)2

− 1 ≥

√√√√1 +

√(
1 + 2 · d

2

c2

)2

− 1 =

=

√
1 +

√
4 · d

2

c2
+ 4 · d

4

c4
≥

√
1 +

√
4 · d

2

c2
=

√
1 + 2 · d

c
≥ 1 +

2d
3c

= 1 +
2
3c
· dist(z, E)

because 0 < 2d
c < 2 and

√
1 + t ≥ 1 + t

3 for 0 ≤ t ≤ 3. �
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Corollary 8.28. Every compact set E ⊂⊂ R ⊂ C, which admits HCP, also admits JP(1, 1).

Proof. This is an immediate consequence of proposition 8.27 and theorem 8.24. �

Note that this corollary improves the result of corollary 8.7.

Lemma 8.29 [cf. Pleśniak 6, theorem 1]. Assume that the compact set E ⊂⊂ C is the sum of two
polynomially convex, disjoint, non-polar compact sets, i.e. E = A ∪ B, A = Â, B = B̂, A ∩ B = ∅,
capA > 0 and capB > 0. Then for any function f ∈ C(E) such that f|A ∈ s(A) and f|B ∈ s(B), we
have f ∈ s(E) and furthermore we can estimate its Jackson norms on the set E by its Jackson norms
on the sets A and B as follows:

∀` ≥ 1 : |f |` ≤ (c · `)` ·
(
|f|A|` + |f|B |`

)
,

where the constant c ≥ 1 depends only on the sets A and B. Note that these are three different Jackson
norms and only the domain of the function indicates which norm is meant.

Proof. We put

χ(z) :=
{

0 if z ∈ A
1 if z ∈ B

and we note that this function can be extended holomorphically so that χ ∈ H∞
(
Ĉ(E, ρ)

)
for some

ρ > 1. Therefore by remark 8.19 we can find a constant M ≥ 1 such that

∀n ∈ N : distE(χ,Pn) ≤ M

ρn
.

Let also x := max{||ΦA||B , ||ΦB ||A} and note that 1 < x < +∞, because the sets A and B are non-polar
and compact. Therefore we can determine a number a ∈ N so that t := ρa

x > 1.
Now fix an arbitrary function f ∈ C(E), such that f|A ∈ s(A) and f|B ∈ s(B), and ` ≥ 1. Find

three sequences of polynomials of best approximation for the functions f|A, f|B and χ on the sets A,
B and E respectively, i.e. pn, qn, rn ∈ Pn, ‖f − pn‖A = distA(f,Pn), ‖f − qn‖B = distB(f,Pn) and
‖χ− rn‖E = distE(χ,Pn) for each n ∈ Z+. Using the Bernstein-Walsh-Siciak inequality we see that

‖pn‖A = ‖f − (f − pn)‖A ≤ ‖f‖A + ‖f − pn‖A = ‖f‖A + distA(f,Pn) ≤ 2 · ‖f‖A,

‖pn‖B ≤ ‖ΦA‖nB · ‖pn‖A ≤ xn · ‖pn‖A ≤ 2xn · ‖f‖A
and similarly

‖qn‖B ≤ 2 · ‖f‖B ,

‖qn‖A ≤ 2xn · ‖f‖B .

For each n ∈ Z+ we put

sn(z) := pn(z) ·
(
1− ra·n(z)

)
+ qn(z) · ra·n(z)

so that sn ∈ P(a+1)·n. This way we obtain

‖f − sn‖A = ‖f − pn + ra·n · (pn − qn)‖A ≤ ‖f − pn‖A + ‖ra·n‖A · ‖pn − qn‖A ≤

≤ distA(f,Pn) + distE(χ,Pa·n) ·
(
‖pn‖A + ‖qn‖A

)
≤
|f|A|`
n`

+
M

ρa·n
·
(
2 · ‖f‖A + 2xn · ‖f‖B

)
≤

≤
|f|A|`
n`

+
M

ρa·n
· 4xn · ‖f‖E =

|f|A|`
n`

+
4M
tn
· ‖f‖E ,

‖f − sn‖B = ‖f − qn + (1− ra·n) · (qn − pn)‖B ≤ ‖f − qn‖B + ‖1− ra·n‖B · ‖qn − pn‖B ≤

≤ distB(f,Pn) + distE(χ,Pa·n) ·
(
‖qn‖B + ‖pn‖B

)
≤
|f|B |`
n`

+
M

ρa·n
·
(
2 · ‖f‖B + 2xn · ‖f‖A

)
≤

≤
|f|B |`
n`

+
M

ρa·n
· 4xn · ‖f‖E =

|f|B |`
n`

+
4M
tn
· ‖f‖E ,
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which leads us to

n` · distE(f,P(a+1)·n) ≤ n` · ‖f − sn‖E ≤ |f|A|` + |f|B |` +
4M · n`

tn
· ‖f‖E ≤

≤ |f|A|` + |f|B |` + 4M ·
(

`

e · log t

)`
· ‖f‖E ≤ (c̃ · `)` ·

(
|f|A|` + |f|B |`

)
,

where c̃ := 1 + max
{

4M
e·log t , 1

}
depends on the sets A and B but not on the choice of the function f and

`. Finally for arbitrary n ∈ Z+ we can find N ∈ Z+ such that (a+ 1) ·N ≤ n < (a+ 1) · (N + 1) to see
that

n` · distE(f,Pn) ≤
(
(a+ 1) · (N + 1)

)` · distE(f,P(a+1)·N ) ≤
≤ (4a)` ·N ` · distE(f,P(a+1)·N ) ≤ (4a · c̃ · `)` ·

(
|f|A|` + |f|B |`

)
,

|f |` = ‖f‖E + sup
n∈N

n` · distE(f,Pn) ≤ (c · `)` ·
(
|f|A|` + |f|B |`

)
< +∞,

where c := 1 + 4a · c̃ also depends only on the sets A and B. �

Proposition 8.30. Assume that the compact set E ⊂⊂ C is the sum of two polynomially convex,
disjoint compact sets, i.e. E = A ∪B, A = Â, B = B̂ and A ∩B = ∅. If the set E admits JP or WJP,
then both subsets A and B admit JP, respectively WJP, with the same coefficients.

Conversely if both sets A and B are additionally non-polar and they both admit JP(s, v) or WJP(s),
for some s, v ≥ 1, then the set E admits JP(s, v + 1), respectively WJP(s).

Proof. In order to prove the first assertion, we first blow these sets up so that dist(A,B) > 2 and
next we apply proposition 8.23 to obtain condition (ii) for the set E. Then we note that the extremal
functions Φn of the sets A and B are bounded below by the extremal functions of the set E and this
way we obtain the same condition (ii) for the sets A and B. Finally we apply proposition 8.23 again to
conclude that they too admit JP, respectively WJP, with the same coefficients.

The second assertion follows straight from lemma 8.29. �
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CHAPTER IX

EXTENSION PROPERTY BY PLEŚNIAK (EXT)

Definition 9.1 [cf. Eggink, definition 3.3; cf. Pleśniak 1, theorem 3.3]. A compact set E ⊂⊂ C
admits the Extension Property by Pleśniak EXT if it is A∞-determining and there exists a continuous
and linear extension operator L : s(E) −→ A∞(E), such that

∀f ∈ s(E) : (Lf)|E ≡ f.

Here the space A∞(E) is normed by the usual seminorms ‖Dαf‖K , where α ∈ Z2
+, K ⊂⊂ C.

Building on earlier joint work with W. Paw lucki [Paw lucki-Pleśniak 1; Paw lucki-Pleśniak 2], W.
Pleśniak originally proved the equivalence of GMI and EXT for C∞-determining compact subsets of
RN , N ∈ N.

Theorem 9.2 [cf. Eggink, theorem 3.4; cf. Pleśniak 1, theorem 3.3]. For any polynomially convex
compact set E ⊂⊂ C we have

GMI ⇐⇒ EXT .

Proof. (=⇒) We assume that the set E admits GMI(k), i.e.

∃M ≥ 1 ∀n ∈ N ∀p ∈ Pn : ‖p′‖E ≤M · nk · ‖p‖E .

Proposition 1.18 implies that

∀n ∈ N ∀p ∈ Pn : ‖p‖E1/nk
≤ M̃ · ‖p‖E ,

where M̃ := eM . From propositions 1.21 and 5.4 we know that the set E is A∞-determining.
Now we fix a function f ∈ s(E) and for each n ∈ Z+ we take Lnf ∈ Pn to be a Lagrange interpolation

polynomial of this function with fixed knots in n + 1 Fekete extremal points of the set E. This means
that

Lnf(z) :=
n∑
µ=0

f
(
ζ(n)
µ

)
· Ln,µ

(
z; ζ(n)

0 , . . . , ζ(n)
n

)
,

where for n ∈ N and µ = 0, . . . , n we put

Ln,µ

(
z; ζ(n)

0 , . . . , ζ(n)
n

)
:=

∏
ν=0,...,n
ν 6=µ

z − ζ(n)
ν

ζ
(n)
µ − ζ(n)

ν

,

where the set
{
ζ

(n)
0 , . . . , ζ

(n)
n

}
⊂ E of Fekete extremal points is chosen so that it realizes the maximum

on En+1 =

n+1 times︷ ︸︸ ︷
E × · · · × E of the expression

∏
0≤µ<ν≤n

∣∣∣ζ(n)
ν − ζ(n)

µ

∣∣∣, while ζ(0)
0 is an arbitrary point of the

set E and L0,0

(
z; ζ(0)

0

)
:= 1. This implies that for all n ∈ Z+ and µ, ν = 0, . . . , n we have

Ln,µ

(
ζ(n)
ν ; ζ(n)

0 , . . . , ζ(n)
n

)
=
{

0 if µ 6= ν,

1 if µ = ν,
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and thus Lnf
(
ζ

(n)
ν

)
= f

(
ζ

(n)
ν

)
. Also from the choice of the Fekete extremal points it follows that for

all z ∈ E we have
∣∣∣Ln,µ (z; ζ(n)

0 , . . . , ζ
(n)
n

)∣∣∣ ≤ 1 and therefore

‖Lnf‖E ≤
n∑
µ=0

‖f‖E ·
∥∥∥Ln,µ ( · ; ζ(n)

0 , . . . , ζ(n)
n

)∥∥∥
E

= (n+ 1) · ‖f‖E .

We define the desired extension Lf as follows:

Lf := u1 · L0f +
∞∑
n=1

un · (Lnf − Ln−1f),

where un ∈ C∞(C), n ∈ N, is a sequence of cutoff functions as constructed in proposition 6.8 for the
compact set K := E and radii εn := 1

nk
.

We will show that this series is convergent together with all its derivatives. For this purpose let’s fix
α ∈ Z2

+ and n ∈ N. We use the Leibniz rule to see that

‖Dα
(
un · (Lnf − Ln−1f)

)
‖C ≤

∑
β∈Z2

+
β≤α

(
α

β

)
· ‖Dβun ·Dα−β(Lnf − Ln−1f)‖C =

=
∑
β≤α

(
α

β

)
· ‖Dβun ·Dα−β(Lnf − Ln−1f)‖E1/nk

≤ . . .

since un ≡ 0 outside of E1/nk ,

. . . ≤
∑
β≤α

(
α

β

)
· ‖Dβun‖E1/nk

· ‖Dα−β(Lnf − Ln−1f)‖E1/nk
≤

≤
∑
β≤α

(
α

β

)
· C|β| · nk·|β| · M̃ · ‖Dα−β(Lnf − Ln−1f)‖E ≤ . . .

because of the properties of the cutoff functions un and the fact that Dα−β(Lnf − Ln−1f) is a holo-
morphic polynomial of degree n at most,

. . . ≤
∑
β≤α
β2=α2

(
α

β

)
· C|β| · nk·|β| · M̃ ·Mα1−β1 · nk·(α1−β1) · ‖Lnf − Ln−1f‖E =

=
∑
β≤α
β2=α2

(
α

β

)
· C|β| · M̃ ·Mα1−β1 · nk·|α| · ‖Lnf − Ln−1f‖E = C̃α · nk·|α| · ‖Lnf − Ln−1f‖E ,

where C̃α :=
∑
β1≤α1

(
α1
β1

)
· Cβ1+α2 · M̃ ·Mα1−β1 are constants depending solely on the set E.

Now take pn ∈ Pn to be any polynomial of best approximation, i.e. ‖f − pn‖E = distE(f,Pn). Since
Ln is a linear operator preserving polynomials of degree n or less, we see that

‖Lnf − pn‖E = ‖Lnf − Ln(pn|E)‖E = ‖Ln(f − pn|E)‖E ≤ (n+ 1) · ‖f − pn‖E = (n+ 1) · distE(f,Pn),

‖f − Lnf‖E = ‖(f − pn)− (Lnf − pn)‖E ≤ ‖f − pn‖E + ‖Lnf − pn‖E ≤ (n+ 2) · distE(f,Pn).

Furthermore we have

‖Lnf − Ln−1f‖E = ‖(f − Lnf)− (f − Ln−1f)‖E ≤ ‖f − Lnf‖E + ‖f − Ln−1f‖E ≤
≤ (n+ 2) · distE(f,Pn) + (n+ 1) · distE(f,Pn−1) ≤ (2n+ 3) · distE(f,Pn−1),



MARKOV’S INEQUALITY IN THE COMPLEX PLANE 61

and therefore

‖Dα
(
un · (Lnf − Ln−1f)

)
‖C ≤ C̃α · nk·|α| · (2n+ 3) · distE(f,Pn−1),

which for all n ≥ 2 leads us to

‖Dα
(
un · (Lnf − Ln−1f)

)
‖C ≤ C̃α ·

nk·|α| · (2n+ 3)
(n− 1)k·|α|+3

· |f |k·|α|+3.

Finally we obtain

‖DαLf‖C ≤ ‖Dα(u1 · L0f)‖C +
∞∑
n=1

‖Dα
(
un · (Lnf − Ln−1f)

)
‖C ≤

≤ C|α| · |f(ζ(0)
0 )|+ 5C̃α · distE(f,P0) + C̃α · S|α| · |f |k·|α|+3 ≤

≤
(
C|α| + 5C̃α + C̃α · S|α|

)
· |f |k·|α|+3 < +∞,

where for t ∈ Z+ we put

St :=
∞∑
n=2

nk·t · (2n+ 3)
(n− 1)k·t+3

≤
∞∑
n=2

2k·t · (n− 1)k·t · 7 · (n− 1)
(n− 1)k·t+3

= 7 · 2k·t ·
∞∑
n=2

1
(n− 1)2

=
7π2

6
· 2k·t < +∞.

As the constants
(
C|α| + 5C̃α + C̃α · S|α|

)
depend only on the set E, this proves the continuity of the

operator L : s(E)→ C∞(C), the linearity of which is obvious.
Now we know that Lf ∈ C∞(C) we will show that (Lf)|E ≡ f and Lf ∈ A∞(E). For this purpose

let’s fix z ∈ E and α ∈ Z2
+ such that α2 ≥ 1. It is easily seen that

Lf(z) = u1(z) · L0f(z) +
∞∑
n=1

un(z) ·
(
Lnf(z)− Ln−1f(z)

)
=

= L0f(z) +
∞∑
n=1

(
Lnf(z)− Ln−1f(z)

)
= lim
n→∞

Lnf(z) = f(z)

and

DαLf(z) = DαL0f(z) +
∞∑
n=1

(
DαLnf(z)−DαLn−1f(z)

)
= 0,

because un ≡ 1 in a neighbourhood of E, f|E ∈ s(E) and the polynomials Lnf are holomorphic.
We conclude that L : s(E)→ A∞(E) is a continuous and linear extension operator as required.
(⇐=) By the assumption there exists a continuous and linear extension operator L : s(E)→ A∞(E).

Continuity means that

∀K ⊂⊂ C ∀α ∈ Z2
+ ∃k ∈ N ∃a−1, a0, . . . , ak ≥ 0 ∀f ∈ s(E) :

‖DαLf‖K ≤ a−1 · |f |−1 + a0 · |f |0 + . . .+ ak · |f |k.

Since |f |−1 ≤ |f |0 ≤ |f |1 ≤ |f |2 ≤ . . . , we have

∀K ⊂⊂ C ∀α ∈ Z2
+ ∃k ∈ N ∃M ≥ 0 ∀f ∈ s(E) : ‖DαLf‖K ≤M · |f |k

and specifically, by considering only polynomials and taking K := E and α := (1, 0), we obtain

∃k ∈ N ∃M ≥ 0 ∀n ∈ N ∀p ∈ Pn :
∥∥∥∥∂L(p|E)

∂z

∥∥∥∥
E

≤M · |p|E |k.
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Fix arbitrary n ∈ N and p ∈ Pn. Because distE(p,Pj) = 0 for j ≥ n, we see that

|p|E |k = ‖p‖E + sup
j∈N

jk · distE(p,Pj) = ‖p‖E + max
1≤j≤n−1

jk · distE(p,Pj) ≤

≤ ‖p‖E + (n− 1)k · max
1≤j≤n−1

distE(p,Pj) ≤ ‖p‖E + (n− 1)k · ‖p‖E ≤ nk · ‖p‖E .

Furthermore, since the set E is assumed to be A∞-determining and we have there L(p|E)|E ≡ p|E , then
also

(1)
(
∂L(p|E)
∂z

)
|E
≡ (p′)|E .

Combining these three estimates we obtain

‖p′‖E =
∥∥∥∥∂L(p|E)

∂z

∥∥∥∥
E

≤M · |p|E |k ≤M · nk · ‖p‖E ,

which proves GMI. �

Remark 9.3. A careful inspection of the constants in the proof of the previous theorem reveals that
for all α ∈ Z2

+ \ {(0, 0)} we have

C̃α ≤
∑
β1≤α1

(
α1

β1

)
·
(
d · (β1 + α2)

)4·(β1+α2) · M̃ ·Mα1−β1 ≤

≤
∑
β1≤α1

(
α1

β1

)
·
(
d · |α|

)4·|α| · M̃ ·M |α| ≤ (2d · M̃ ·M · |α|
)4·|α|

,

C|α| + 5C̃α + C̃α · S|α| ≤
(
d · |α|

)4·|α| + (2d · M̃ ·M · |α|
)4·|α|

·
(

5 +
7π2

6
· 2k·|α|

)
≤

≤
(

2d · M̃ ·M · |α|
)4·|α|

·
(

6 +
7π2

6
· 2k·|α|

)
≤
(

2d · M̃ ·M · |α|
)4·|α|

·
(
6 + 12 · 2k

)|α| ≤ (d1 · |α|
)4·|α|

,

while

C0 + 5C̃(0,0) + C̃(0,0) · S0 ≤ d+ 5d · M̃ + d · M̃ · 7π2

6
≤ 18d · M̃ ≤ d1,

where d ≥ 1 is the absolute constant from proposition 6.8 on cutoff functions and d1 := 9d · M̃ ·M · 2k
depends only on the set E. Consequently for all f ∈ s(E) and α ∈ Z2

+ \ {(0, 0)} we have

‖DαLf‖C ≤ (d1 · |α|)4·|α| · |f |k·|α|+3,

‖Lf‖C ≤ d1 · |f |3.

Remark 9.4. Note that the operator L constructed in theorem 9.2 preserves each polynomial in a
certain open neighbourhood of the set E. Indeed, if p ∈ Pn for some n ∈ N, then for all z ∈ Un :={
z ∈ C : dist(z, E) < 1

8nk

}
⊂
⋂n
j=1 {z ∈ C : uj(z) = 1} we see that

L(p|E)(z) = u1(z) · L0(p|E)(z) +
∞∑
j=1

uj(z) ·
(
Lj(p|E)(z)− Lj−1(p|E)(z)

)
=

= u1(z) · L0(p|E)(z) +
n∑
j=1

uj(z) ·
(
Lj(p|E)(z)− Lj−1(p|E)(z)

)
=

= L0(p|E)(z) +
n∑
j=1

(
Lj(p|E)(z)− Lj−1(p|E)(z)

)
= Ln(p|E)(z) = p(z),
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because for all j ≥ n we have Lj(p|E) ≡ p.
Note also that in the proof of the first implication (=⇒), we needed the assumption that the set E

is polynomially convex only in order to deduce that it is A∞-determining. In fact for any set admitting
GMI, it is possible to construct a continuous and linear extension operator as in the theorem.

In the converse proof (⇐=), we needed the assumption that the set E is A∞-determining only in order
to obtain equality (1). Instead we could also assume that the operator L preserves each polynomial in a
certain open neighbourhood of the set E. Without either one of these two assumptions, the implication
(⇐=) would not be true. To see this consider the set E := {0}, for which s(E) ∼= C, and the operator

L : s(E) 3 f −→ Lf ∈ A∞(E) Lf ≡ f(0).

Then we have

∀K ⊂⊂ C ∀α ∈ Z2
+ ∀f ∈ s(E) : ‖DαLf‖K ≤ |f(0)| = |f |−1,

which demonstrates the continuity of the operator L.

Corollary 9.5. For any polynomially convex compact set E ⊂⊂ C we have

(i) H∞(E)|E ⊂ s(E) ∩ A∞(E)|E ⊂ C∞(E),

while if it additionally admits GMI, then we have

(ii) H∞(E)|E ⊂ s(E) ⊂ A∞(E)|E ⊂ C∞(E).

Furthermore for any compact set E ⊂⊂ R we have

(iii) H∞(E)|E ⊂ A∞(E)|E = C∞(E) ⊂ s(E),

while if it additionally admits GMI, then we have

(iv) H∞(E)|E ⊂ A∞(E)|E = C∞(E) = s(E).

Proof. The inclusions H∞(E)|E ⊂ A∞(E)|E ⊂ C∞(E) are trivially true for any set E ⊂⊂ C, while
the inclusion H∞(E)|E ⊂ s(E) follows from corollary 8.20, provided that the set E is polynomially
convex. Additionally the inclusion s(E) ⊂ A∞(E)|E , which is essentially S.N. Bernstein’s theorem [cf.
Pleśniak 1, theorem 3.3.iii; cf. Bernstein 1], follows from theorem 9.2 for any set E ⊂⊂ C admitting
GMI (even if it is not polynomially convex - see remark 9.4) and this finishes statements (i) and (ii).

Furthermore from corollary 8.6 following Jackson’s theorem we know that C∞(E) ⊂ s(E) for any
compact set E ⊂⊂ R and together with statement (ii), this leads to statement (iv). Finally, if E ⊂⊂ R,
then the interval I := convE admits GMI and we see that

C∞(E) = C∞(I)|E =
(
A∞(I)|I

)
|E = A∞(I)|E ⊂ A∞(E)|E ,

which completes statement (iii). Note that this last inclusion can also be proved by solving a simple
differential equation. �

Example 9.6. Without the assumption that the compact set E ⊂⊂ R admits GMI, the inclusion
s(E) ⊂ C∞(E) does not have to be true. Consider for example the set E = {0} ∪

⋃∞
j=1

{
− 1

2j ,
1
2j

}
and

the function f(x) := |x|. Clearly f /∈ C∞(E) but we will show that f ∈ s(E).
Indeed consider the following Lagrange interpolation polynomials for n ∈ N

pn(x) :=
∑

µ=1,...,n

2µ · x2 ·
∏

ν=1,...,n
ν 6=µ

4ν · x2 − 1
4ν−µ − 1

.

Note that pn ∈ P2n and pn(x) = f(x) whenever x = 0 or |x| = 1
2j for some j ∈ {1, . . . , n}. Therefore

we have

distE(f,P2n) ≤ ‖f − pn‖E = ‖f − pn‖E∩B(0, 1
2n+1 ) ≤ ‖f‖E∩B(0, 1

2n+1 ) + ‖pn‖E∩B(0, 1
2n+1 ).
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For any x ∈ E ∩B
(
0, 1

2n+1

)
we have |f(x)| = |x| ≤ 1

2n+1 and

|pn(x)| ≤
∑

µ=1,...,n

2µ · 1
4n+1

·
∏

ν=1,...,n
ν 6=µ

∣∣∣∣4ν · x2 − 1
4ν−µ − 1

∣∣∣∣ ≤ ∑
µ=1,...,n

2µ · 1
4n+1

·
∏

ν=1,...,n
ν 6=µ

∣∣∣∣ 1
1
4 − 1

∣∣∣∣ =

=
∑

µ=1,...,n

2µ · 1
4n+1

·
(

4
3

)n−1

≤ 2n+1 · 1
4n+1

·
(

4
3

)n−1

=
3
8
·
(

2
3

)n
.

We conclude that

distE(f,P2n) ≤ 1
2n+1

+
3
8
·
(

2
3

)n
≤ 7

8
·
(

2
3

)n
from which it follows that f ∈ s(E). �

Remark 9.7 [cf. Pleśniak 1, theorem 3.3.iv-vi]. We saw already that if a compact set E ⊂⊂ R admits
GMI, then A∞(E)|E = C∞(E) = s(E). This allowed W. Pleśniak to assert in his extension theorem
three equivalent topological properties of the function spaces s(E) and C∞(E) with their respective
Jackson and quotient topologies. However without additional assumptions there is no obvious analogy
in the complex case.

Remark 9.8. The characterization of compact sets E ⊂⊂ C, for which A∞(E)|E = s(E), remains
an open problem, especially for totally disconnected sets. In [Siciak 3, theorem 1.10], J. Siciak proved
this property for simply connected continua for which the conformal mapping ψ : Ĉ \B(0, 1) −→ Ĉ \E,
with ψ(∞) = ∞, is Hölder-continuous in the annulus {z ∈ C : 1 ≤ |z| ≤ 2}. Subsequently we
were able to generalize this result for a finite union of such disjoint simply connected continua. More
recently L. Gendre constructed an approximation technique for functions of the class A∞(E)|E , where
E ⊂⊂ CN , N ∈ N, is Whitney 1-regular and admits HCP as well as  LS, which allowed him to assert that
A∞(E)|E = s(E) [Gendre, corollary 7]. It remains to be verified whether the assumption of Whitney
1-regularity can be somehow circumvented in the case of sets on the complex plane.
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CHAPTER X

EXTENSION PROPERTY BY BOS-MILMAN (EXP)

L.P. Bos and P.D. Milman, adapting earlier work by W. Pleśniak, formulated a different extension
theorem for compact subsets of RN , N ∈ N. They proved that any such set admitting GMI also admits
a ”bounded extension of C∞ functions with homogeneous linear loss of differentiability (in the quotient
topology)”. We modified their definition of the extension property so that it can be deduced from GMI
for any polynomially convex compact subset of C. In this definition we replaced the quotient norms
· E,m·`, where m ∈ N, with Jackson norms | · |k·`+c0 , where k ≥ 1, as they work well for functions that

are holomorphic in some open neighbourhood of a polynomially convex compact set.

Definition 10.1 [cf. Eggink, definition 9.1; cf. Bos-Milman, definition 3.10]. A compact set E ⊂⊂ C
admits the Extension Property by Bos-Milman EXP(k, u), where k, u ≥ 1, if it is A∞-determining and

∀f ∈ s(E) ∃f̃ ∈ A∞(E) :

(a) f̃|E ≡ f,

(b) ‖f̃‖C,0 ≤ c2 · ||f ||E ,

(c) ‖f̃‖C,` ≤ (c2 · `u)`+c1 · |f |k·`+c0 for all ` ∈ N,

with some c0, c1 ≥ 0 and c2 ≥ 1 dependent only on the set E. We will write that the set E admits EXP,
if it admits EXP(k, u), for some k, u ≥ 1.

Remark 10.2. In remark 9.3 following Pleśniak’s theorem 9.2 we showed similar properties of the
extension Lf . However here we want to estimate the norm ‖ · ‖C of the extension by the usual norm
‖ · ‖E of the function itself, rather than | · |3 or even ‖ · ‖Eδ for some δ > 0. In order to achieve this
L.P. Bos and P.D. Milman modified W. Pleśniak’s proof, however at the expense of the linearity of the
extension operator.

By the way, L.P. Bos and P.D. Milman have also proved the existence of a ”bounded linear extension
of C∞ functions with homogeneous linear loss of differentiability (in the quotient topology)” for compact
subsets of RN , N ∈ N, admitting ”quasi-geometric local bounds on polynomials”, which in turn is
equivalent to LMP. It appears that a corresponding theorem is true for compact subsets of the complex
plane too.

Proposition 10.3 [Bos-Milman, proof of theorem B]. For any compact set E ⊂⊂ C and coefficient
k ≥ 1 there exists a sequence of decreasing cutoff functions ũn ∈ C∞(C) such that for all n ∈ N

(i) 0 ≤ ũn+1(z) ≤ ũn(z) ≤ 1 for all z ∈ C,

(ii) ũn(z) = 1 if dist(z, E) ≤ 1
8nk

,

(iii) ũn(z) = 0 if dist(z, E) ≥ 1
nk
,

(iv) ‖Dαũn‖C ≤ C|α| · n(k+1)·|α| for all α = (α1, α2) ∈ Z2
+

where Ct := (d · t)4t for t ∈ N, C0 := d and d ≥ 1 is the absolute constant from proposition 6.8.

Proof. For each j ∈ N denote by uj ∈ C∞(C) the cutoff function constructed in proposition 6.8 for
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the compact set K := E and radius εj := 1
jk

, i.e.

(a) 0 ≤ uj(z) ≤ 1 for all z ∈ C,

(b) uj(z) = 1 if dist(z, E) ≤ εj
8
,

(c) uj(z) = 0 if dist(z, E) ≥ εj ,

(d) ‖Dαuj‖C ≤
C|α|

ε
|α|
j

for all α = (α1, α2) ∈ Z2
+

where Ct := (d · t)4t for t ∈ N, C0 := d and d ≥ 1 is some absolute constant. We define ũn ∈ C∞(C) as
follows:

ũn(z) :=
∏

j=1,...,n

uj(z)

and we see that conditions (i), (ii) and (iii) are obviously fulfilled. In order to verify condition (iv), we
note that by the Leibniz rule we have for α ∈ Z2

+

Dαũn =
∑

γ1+···+γn=α

aγ ·Dγ1u1 · . . . ·Dγnun

with some combinatorial constants aγ ∈ N, where γ = (γ1, . . . , γn) and γ1, . . . , γn ∈ Z2
+. We conclude

that

‖Dαũn‖C ≤
∑

γ1+...+γn=α

aγ ·
∏

j=1,...,n

‖Dγjuj‖C ≤
∑

γ1+...+γn=α

aγ ·
∏

j=1,...,n

C|γj |

ε
|γj |
j

≤

≤
∑

γ1+...+γn=α

aγ ·
∏

j=1,...,n

(d · |γj |)4·|γj |

ε
|γj |
j

≤
∑

γ1+...+γn=α

aγ ·
∏

j=1,...,n

(d · |α|)4·|γj |

ε
|γj |
n

=

=
∑

γ1+...+γn=α

aγ ·
(d · |α|)4·|α|

ε
|α|
n

≤ n|α| · (d · |α|)4·|α|

ε
|α|
n

= C|α| · n(k+1)·|α|,

because
∑
γ1+...+γn=α aγ ≤ n|α|, which follows from the proof of the Leibniz rule by induction. �

Theorem 10.4 [cf. Eggink, theorem 9.2; cf. Bos-Milman, theorem B]. For any polynomially convex
compact set E ⊂⊂ C, k′ > k ≥ 1 and u ≥ 1 we have

GMI(k) =⇒ EXP(k + 1, 4),

EXP(k, u) =⇒ GMI(k′).

Proof. Let’s first assume that the set E admits GMI(k), i.e.

∃M ≥ 1 ∀n ∈ N ∀p ∈ Pn : ‖p′‖E ≤M · nk · ‖p‖E .

Proposition 1.18 implies that

∀n ∈ N ∀p ∈ Pn : ‖p‖E1/nk
≤ M̃ · ‖p‖E ,

where M̃ := eM . From propositions 1.21 and 5.4 we know that the set E is A∞-determining.
Now we fix a function f ∈ s(E) and for each n ∈ Z+ we take pn ∈ Pn to be any polynomial of best

approximation, i.e. ‖f − pn‖E = distE(f,Pn). We define the desired extension f̃ as follows:

f̃ := ũ1 · p0 +
∞∑
n=1

ũn · (pn − pn−1),

where ũn ∈ C∞(C), n ∈ N, is a sequence of cutoff functions as constructed in proposition 10.3 for the
compact set E and coefficient k.
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Similarly to the method used by W. Pleśniak, L.P. Bos and P.D. Milman show that this series is
convergent together with all its derivatives. For this purpose let’s fix α ∈ Z2

+ and n ∈ N. We use the
Leibniz rule to see that

‖Dα
(
ũn · (pn − pn−1)

)
‖C ≤

∑
β∈Z2

+
β≤α

(
α

β

)
· ‖Dβ ũn ·Dα−β(pn − pn−1)‖C =

=
∑
β≤α

(
α

β

)
· ‖Dβ ũn ·Dα−β(pn − pn−1)‖E1/nk

≤ . . .

since un ≡ 0 outside of E1/nk ,

. . . ≤
∑
β≤α

(
α

β

)
· ‖Dβ ũn‖E1/nk

· ‖Dα−β(pn − pn−1)‖E1/nk
≤

≤
∑
β≤α

(
α

β

)
· C|β| · n(k+1)·|β| · M̃ · ‖Dα−β(pn − pn−1)‖E ≤ . . .

because of the properties of the cutoff functions ũn and the fact that Dα−β(pn−pn−1) is a holomorphic
polynomial of degree n at most,

. . . ≤
∑
β≤α
β2=α2

(
α

β

)
· C|β| · n(k+1)·|β| · M̃ ·Mα1−β1 · nk·(α1−β1) · ‖pn − pn−1‖E ≤

≤
∑
β≤α
β2=α2

(
α

β

)
· C|β| · M̃ ·Mα1−β1 · n(k+1)·|α| · ‖pn − pn−1‖E = C̃α · n(k+1)·|α| · ‖pn − pn−1‖E ,

where C̃α :=
∑
β1≤α1

(
α1
β1

)
· Cβ1+α2 · M̃ ·Mα1−β1 are constants depending solely on the set E.

Furthermore we have

‖pn − pn−1‖E = ‖(pn − f)− (pn−1 − f)‖E ≤ ‖f − pn‖E + ‖f − pn−1‖E =

= distE(f,Pn) + distE(f,Pn−1) ≤ 2 · distE(f,Pn−1),

and therefore
‖Dα

(
ũn · (pn − pn−1)

)
‖C ≤ 2C̃α · n(k+1)·|α| · distE(f,Pn−1),

which for all n ≥ 2 leads us to

‖Dα
(
ũn · (pn − pn−1)

)
‖C ≤ 2C̃α ·

n(k+1)·|α|

(n− 1)(k+1)·|α|+2
· |f |(k+1)·|α|+2.

Finally we obtain

‖Dαf̃‖C ≤ ‖Dα
(
ũ1 · p0

)
‖C +

∞∑
n=1

‖Dα
(
ũn · (pn − pn−1)

)
‖C ≤

≤ C|α| · ‖f‖E + 2C̃α · distE(f,P0) + C̃α · S̃|α| · |f |(k+1)·|α|+2 ≤

≤
(
C|α| + 2C̃α + C̃α · S̃|α|

)
· |f |(k+1)·|α|+2,

where for t ∈ Z+ we put

S̃t :=
∞∑
n=2

2n(k+1)·t

(n− 1)(k+1)·t+2
≤
∞∑
n=2

2 · 2(k+1)·t · (n− 1)(k+1)·t

(n− 1)(k+1)·t+2
=

= 21+(k+1)·t ·
∞∑
n=2

1
(n− 1)2

=
π2

3
· 2(k+1)·t < +∞.
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A careful inspection of the constants reveals that for all α ∈ Z2
+ \ {(0, 0)} we have

C̃α ≤
∑
β1≤α1

(
α1

β1

)
·
(
d · (β1 + α2)

)4·(β1+α2) · M̃ ·Mα1−β1 ≤

≤
∑
β1≤α1

(
α1

β1

)
·
(
d · |α|

)4·|α| · M̃ ·M |α| ≤ (2d · M̃ ·M · |α|
)4·|α|

,

C|α| + 2C̃α + C̃α · S̃|α| ≤
(
d · |α|

)4·|α| + (2d · M̃ ·M · |α|
)4·|α|

·
(

2 +
π2

3
· 2(k+1)·|α|

)
≤

≤
(

2d · M̃ ·M · |α|
)4·|α|

·
(

3 +
π2

3
· 2(k+1)·|α|

)
≤
(

2d · M̃ ·M · |α|
)4·|α|

·
(
3 + 7 · 2k

)|α| ≤ (d1 · |α|
)4·|α|

,

while

C0 + 2C̃(0,0) + C̃(0,0) · S̃0 ≤ d+ 2d · M̃ + d · M̃ · π
2

3
≤ 7d · M̃ ≤ d1,

where d ≥ 1 is the absolute constant from proposition 6.8 on cutoff functions and d1 := 4d · M̃ ·M · 2k
depends only on the set E. Consequently for all ` ∈ N we obtain

‖f̃‖C,` = ‖f̃‖C +
∑
|α|=`

‖Dαf̃‖C ≤

≤
(
C0 + 2C̃(0,0) + C̃(0,0) · S̃0

)
· |f |2 +

∑
|α|=`

(
C|α| + 2C̃α + C̃α · S̃|α|

)
· |f |(k+1)·|α|+2 ≤

≤ d1 · |f |2 +
∑
|α|=`

(
d1 · |α|

)4·|α| · |f |(k+1)·|α|+2 ≤
(
d1 + (`+ 1) ·

(
d1 · `

)4`) · |f |(k+1)·`+2 ≤

≤ (`+ 2) ·
(
d1 · `

)4` · |f |(k+1)·`+2 ≤
(
c2 · `4

)` · |f |(k+1)·`+c0 < +∞,

where c0 := 2 and c2 := max
{

3d4
1, 2M̃

}
depend only on the set E.

Now we know that f̃ ∈ C∞(C) we will show that f̃|E ≡ f and f̃ ∈ A∞(E). For this purpose let’s fix
z ∈ E and α ∈ Z2

+ such that α2 ≥ 1. It is easily seen that

f̃(z) = ũ1(z) · p0(z) +
∞∑
n=1

ũn(z) ·
(
pn(z)− pn−1(z)

)
=

= p0(z) +
∞∑
n=1

(
pn(z)− pn−1(z)

)
= lim
n→∞

pn(z) = f(z)

and

Dαf̃(z) = Dαp0(z) +
∞∑
n=1

(
Dαpn(z)−Dαpn−1(z)

)
= 0,

because ũn ≡ 1 in an open neighbourhood of the set E, f ∈ s(E) and the polynomials pn are holomor-
phic.

Finally for α = (0, 0) we will show something better. For ν ∈ N denote by Sν ∈ C∞(C) the partial
sum of the series f̃ :

Sν := ũ1 · p0 +
ν∑

n=1

ũn · (pn − pn−1) = ũ1 · p0 +
ν∑

n=1

ũn · pn −
ν∑

n=1

ũn · pn−1 =

= ũ1 · p0 +
ν∑

n=1

ũn · pn −
ν−1∑
n=0

ũn+1 · pn =
ν∑

n=1

ũn · pn −
ν−1∑
n=1

ũn+1 · pn = ũν · pν +
ν−1∑
n=1

pn · (ũn − ũn+1).
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Since supp ũn+1 ⊂ supp ũn ⊂ E1/nk for all n ∈ N we see that

‖pn‖E1/nk
≤ M̃ · ‖pn‖E ≤ M̃ ·

(
‖f − pn‖E + ‖f‖E

)
= M̃ ·

(
distE(f,Pn) + ‖f‖E

)
≤ 2M̃ · ‖f‖E

and for any z ∈ C we have

|ũν(z) · pν(z)| ≤ |ũν(z)| · ‖pν‖E1/νk
≤ 2M̃ · ‖f‖E · ũν(z),

|pn(z) ·
(
ũn(z)− ũn+1(z)

)
| ≤ ‖pn‖E1/nk

· |ũn(z)− ũn+1(z)| ≤ 2M̃ · ‖f‖E ·
(
ũn(z)− ũn+1(z)

)
,

by the assumption that the sequence ũn is positive and decreasing. Finally

|Sν(z)| ≤ 2M̃ · ‖f‖E · ũν(z) +
ν−1∑
n=1

2M̃ · ‖f‖E ·
(
ũn(z)− ũn+1(z)

)
= 2M̃ · ‖f‖E · ũ1(z) ≤ 2M̃ · ‖f‖E

and consequently
|f̃(z)| = lim

ν→∞
|Sν(z)| ≤ 2M̃ · ‖f‖E ,

‖f̃‖C,0 = ‖f̃‖C ≤ 2M̃ · ‖f‖E ≤ c2 · ||f ||E ,

which finishes the proof of EXP (k + 1, 4).
Conversely let’s assume that the set E admits EXP(k, u), i.e. it is A∞-determining and

∀f ∈ s(E) ∃f̃ ∈ A∞(E) :

(a) f̃|E ≡ f,

(b) ‖f̃‖C,0 ≤ c2 · ||f ||E ,

(c) ‖f̃‖C,` ≤ (c2 · `u)`+c1 · |f |k·`+c0 for all ` ∈ N,

with some c0, c1 ≥ 0 and c2 ≥ 1 dependent only on the set E.
Fix arbitrarily an integer ` ∈ N, a polynomial p ∈ Pn with some n ∈ N and a point z0 ∈ E. We can

apply EXP(k, u) to the restriction to the set E of the polynomial f(z) :=
(
p(z) − p(z0)

)`, f|E ∈ s(E),
to obtain the following estimate

`! · |p′(z0)|` = |f (`)(z0)| ≤ ‖f (`)‖E ≤ ‖f‖E,` = ‖f̃‖E,` ≤ ‖f̃‖C,` ≤ (c2 · `u)`+c1 · |f|E |k·`+c0 ,

because the set E is A∞-determining. Now obviously we have f ∈ P`·n and therefore distE(f,Pj) = 0
for all j ≥ ` · n, which implies that

|f|E |k·`+c0 = ‖f‖E + sup
j∈N

jk·`+c0 · distE(f,Pj) =

= ‖f‖E + max
j=1,...,`·n−1

jk·`+c0 · distE(f,Pj) ≤ ‖f‖E + (` · n− 1)k·`+c0 · max
j=1,...,`·n−1

distE(f,Pj) ≤

≤ ‖f‖E + (` · n− 1)k·`+c0 · ‖f‖E ≤ (` · n)k·`+c0 · ‖f‖E ≤ (` · n)k·`+c0 ·
(
2 · ‖p‖E

)`
.

We combine these two estimates to obtain

`! · |p′(z0)|` ≤ (c2 · `u)`+c1 · (` · n)k·`+c0 ·
(
2 · ‖p‖E

)`
,

|p′(z0)| ≤ (c2 · `u)1+c1/` · (` · n)k+c0/` · 2 · ‖p‖E .

Because the point z0 was arbitrary, we conclude that

‖p′‖E ≤M` · nk+c0/` · ‖p‖E ,

where M` := (c2 · `u)1+c1/` · `k+c0/` · 2 depends only on the set E. This implies that the set E admits
GMI(k + c0/`), so it suffices to take ` sufficiently large to obtain GMI(k′). �

Remark 10.5. Remark 9.4 applies to the previous theorem accordingly.
The following lemma is due to L. Bia las-Cież. It allows to deduce a pointwise Sobolev-type inequality

from a pointwise Markov-type inequality, for any function that is ∂̄-flat in just one point.
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Lemma 10.6. Assume that the compact set K ⊂ C admits the following inequality in the point z0 ∈ K

∀0 < r ≤ 1 ∀n ∈ N ∀p ∈ Pn ∀j = 1, . . . , n : |p(j)(z0)| ≤

(
c′ · nk′

rm′

)j
· ‖p‖K∩B(z0,r),(1)

where c′, k′,m′ ≥ 1 depend only on the set K and possibly the point z0. Then for any function g ∈ C∞(C)
that is ∂̄-flat in the point z0 and g|K 6≡ 0 we have

∀` ∈ N ∀j = 1, . . . , ` :
∣∣∣∣∂jg∂zj

(z0)
∣∣∣∣ ≤ (2c′ · `k

′
)j
· ||g||1−

m′·j
`

K · ||g||
m′·j
`

convK,`.

Proof. Fix ` ∈ N and a function g as above, i.e. Dαg(z0) = 0 for all α = (α1, α2) ∈ Z2
+ such that

α2 ≥ 1. Therefore the Taylor polynomial has the following form:

T `z0g(z) =
∑
|α|≤`−1

1
α!
·Dαg(z0) · (z − z0)α =

`−1∑
α1=0

1
α1!
· ∂

α1g

∂zα1
(z0) · (z − z0)α1 ,

and thus T `z0g ∈ P`−1 and ∂jg
∂zj (z0) = dj

dzj T
`
z0g(z0) for each j = 1, . . . , ` − 1. We apply inequality (1) to

the holomorphic polynomial T `z0g to obtain

∣∣∣∣∂jg∂zj
(z0)

∣∣∣∣ =
∣∣∣∣ djdzj T `z0g(z0)

∣∣∣∣ ≤
(
c′ · (`− 1)k

′

rm′

)j
· ||T `z0g||K∩B(z0,r)

for all 0 < r ≤ 1. Denote by R`z0g the Taylor remainder of the function g, i.e. R`z0g := g − T `z0g. By
proposition 5.2, the Taylor formula with the remainder of Lagrange, we have for any z1 ∈ C

|R`z0g(z1)| ≤ min
{

1,
2`

`!

}
· |z1 − z0|` · |g|[z0,z1],`.

Consequently for any 0 < r ≤ 1 we have

∣∣∣∣∂jg∂zj
(z0)

∣∣∣∣ ≤
(
c′ · `k′

rm′

)j
·
(
||g||K∩B(z0,r) + ||R`z0g||K∩B(z0,r)

)
≤

(
c′ · `k′

rm′

)j
·
(
||g||K + r` · |g|convK,`

)
for j = 1, . . . , `− 1, but obviously for j = ` this is also true.

We put r :=
(

||g||K
‖g‖convK,`

)1/`

≤ 1 to see that

∣∣∣∣∂jg∂zj
(z0)

∣∣∣∣ ≤
c′ · `k′ · ‖g‖m′/`convK,`

||g||m
′/`

K

j

·
(
||g||K +

||g||K
‖g‖convK,`

· |g|convK,`

)
=

=
(
c′ · `k

′
)j
· ‖g‖

m′·j
`

convK,` · ||g||
1−m

′·j
`

K ·
(

1 +
|g|convK,`

‖g‖convK,`

)
.

Because |g|convK,` < ‖g‖convK,` we conclude that for j = 1, . . . , ` we have

∣∣∣∣∂jg∂zj
(z0)

∣∣∣∣ ≤ (2c′ · `k
′
)j
· ||g||1−

m′·j
`

K · ||g||
m′·j
`

convK,`. �
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Theorem 10.7 [cf. Eggink, theorem 9.5; cf. Bos-Milman, theorem B]. For any polynomially convex
compact set E ⊂⊂ C and k, u, s, v ≥ 1 we have

EXP(k, u) ∧ JP(s, v) =⇒ SPH(1, k · s, k · v + u+ 1),

EXP(k, u) ∧WJP(s) =⇒ WSPH(1, k · s).

Proof. Let’s first assume that the set E admits EXP(k, u) and WJP(s), i.e. it is A∞-determining
and

∀f ∈ s(E) ∃f̃ ∈ A∞(E) :

(a) f̃|E ≡ f,

(b) ‖f̃‖C,0 ≤ c2 · ||f ||E ,

(c) ‖f̃‖C,` ≤ (c2 · `u)`+c1 · |f |k·`+c0 for all ` ∈ N,

with some c0, c1 ≥ 0 and c2 ≥ 1 dependent only on the set E and additionally

∃c̃0 ≥ 0 ∀` ≥ 1 ∃c̃` ≥ 1 ∀0 < δ ≤ 1 ∀f ∈ H∞(Eδ) : |f|E |` ≤
(
c̃`
δs

)`+c̃0
· ||f ||Eδ .

Without loss of generality we can assume that the sequence {c̃`}`∈N is increasing.
Fix arbitrarily 0 < δ ≤ 1, f ∈ H∞(Eδ), ` ∈ N, j ∈ {1, . . . , `} and a point z0 ∈ E. We can assume

that f|E 6≡ 0, since otherwise the assertion would be trivial, because the set E is A∞-determining.
By corollary 8.20 we know that f|E ∈ H∞(E)|E ⊂ s(E) and thus we can apply EXP(k, u) to find a

function f̃ ∈ A∞(E) as above and we can combine estimate (c) with WJP(s) to obtain

‖f̃‖C,` ≤ (c2 · `u)`+c1 · |f|E |k·`+c0 ≤ (c2 · `u)`+c1 ·
(
c̃k·`+c0
δs

)k·`+c0+c̃0

· ||f ||Eδ .

Next we apply lemma 10.6 to the set K := E1 and the function f̃ . Because for each 0 < r ≤ 1 we
have K ∩B(z0, r) = B(z0, r), we see that the set K admits inequality (1) assumed in the lemma in each
point z0 ∈ E ⊂ K with constant coefficients c′ = k′ = m′ = 1. Therefore by the lemma we obtain∣∣∣∣∣∂j f̃∂zj (z0)

∣∣∣∣∣ ≤ (2`)j · ||f̃ ||1−
j
`

K · ||f̃ ||
j
`

convK,` ≤ (2`)j · ||f̃ ||1−
j
`

C · ||f̃ ||
j
`

C,` ≤

≤ (2`)j · c1−
j
`

2 · ||f ||1−
j
`

E · (c2 · `u)j+c1·j/` ·
(
c̃k·`+c0
δs

)k·j+(c0+c̃0)·j/`

· ||f ||
j
`

Eδ
≤

≤
(
2c22 · `u+1

)j+c1 · ( c̃k·`+c0
δs

)k·j+c0+c̃0

· ||f ||1−
j
`

E · ||f ||
j
`

Eδ
≤
(
d`
δk·s

)j+d0
· ||f ||1−

j
`

E · ||f ||
j
`

Eδ
,

where d` := 2c22 · `u+1 · c̃ kk·`+c0 and d0 := max
{
c1,

c0+c̃0
k

}
depend only on the set E.

Since E is A∞-determining and f̃|E ≡ f|E we have ∂j f̃
∂zj ≡

∂jf
∂zj on the set E and hence

|f |E,j = |f̃ |E,j =

∥∥∥∥∥∂j f̃∂zj
∥∥∥∥∥
E

≤
(
d`
δk·s

)j+d0
· ||f ||1−

j
`

E · ||f ||
j
`

Eδ
,

because the point z0 ∈ E was arbitrary. This finishes the proof of WSPH(1, k · s).
Finally if we assume additionally that c̃` ≤ c̃1 · `v, i.e. the set E admits JP(s, v), then we have

d` ≤ 2c22 · `u+1 · c̃ k1 · (k · `+ c0)k·v ≤ 2c22 · c̃ k1 · (k + c0)k·v · `k·v+u+1,

which proves SPH(1, k · s, k · v + u+ 1). �

We are now ready to state the second part of our main result by simply combining theorems 10.4,
10.7 and 7.9.
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Theorem 10.8. For any polynomially convex compact set E ⊂⊂ C and k, s, v ≥ 1, we have the
following strings of implications:

GMI(k)∧JP(s, v) =⇒ EXP(k+1, 4)∧JP(s, v) =⇒ SPH
(
1, (k+1) ·s, (k+1) ·v+5

)
=⇒ LMP(m′, k′),

GMI(k) ∧WJP(s) =⇒ EXP(k + 1, 4) ∧WJP(s) =⇒ WSPH
(
1, (k + 1) · s

)
=⇒ WLMP(m′),

for any m′ > (k + 1) · s and k′ > (k + 1) · (3s+ v) + 5.

Combining this additionally with theorem 8.24, corollary 8.28 and corollary 8.8, we obtain some
special cases.

Corollary 10.9. If a polynomially convex compact set E ⊂⊂ C admits HCP(k) and  LS(s), with
k, s ≥ 1, then it admits LMP(m′, k′) for any m′ > (k + 1) · s and k′ > (k + 1) · (3s+ 1) + 5.

Corollary 10.10. If a compact set E ⊂⊂ R admits HCP(k), with k ≥ 1, then it admits LMP(m′, k′)
for any m′ > k + 1 and k′ > 4k + 9.

Corollary 10.11. If a compact set E ⊂⊂ R admits GMI(k), with k ≥ 1, then it admits LMP(m′, k′)
for any m′ > k + 1 and k′ > 9k + 14.

Remark 10.12. Compare the last corollary with [Bos-Milman, theorem B], which asserted the fol-
lowing string of implications for any compact set E ⊂⊂ R and k ≥ 1:

GMI(k) =⇒ EXP(m, 4) =⇒ SPQ(m, k′) =⇒ LMP(m′, k′′),

for any m′ > m ≥ k + 4, provided that m ∈ N. No explicit statement was given concerning k′, k′′ ≥ 1.

Remark 10.13. If we know that a polynomially convex set E ⊂⊂ C admits GMI(k) and LMP(m′, k′)
for some k′ > k ≥ 1 and m′ ≥ 1, then we could ask whether it is possible to improve the coefficient k′?
Note in this context the example of the unit ball, which admits GMI(1) and LMP(1, 2), but does not
admit LMP(1, 1).

Remark 10.14. L. Bia las-Cież has recently constructed a family of examples of polynomially convex
compact sets in the complex plane, which admit GMI, but are not m-perfect for any m ≥ 1 and therefore
they do not admit LMP. Moreover, these sets do not admit  LS. These examples show that without the
assumption JP theorems 10.7 and 10.8 would not be true.

During our search for the weakest possible assumption, which in conjunction with GMI would allow
to assert LMP for any polynomially convex compact set in the complex plane, J. Siciak presented us
with the following example showing that, differently from Jackson’s theorem in the complex plane 8.24,
the property  LS, and thus also JP, is not a prerequisite for Markov’s properties.

Example 10.15. Put E := B(−2, 2)∪B(2, 2), which is a compact set consisting of two adjacent balls.
Obviously the set E is simply connected and therefore by remark 1.20 and corollary 7.7 it admits GMI(2)
and LMP(1, 3). Consequently by theorem 10.4 and corollary 7.11 we know that it also admits EXP(3, 4)
and SPH(1, 1, 8). However we will show that the set E does not admit  LS, which by proposition 8.26
implies that it does not admit JP or even WJP. Hence in theorem 10.7 the property JP, respectively
WJP, is not the weakest possible assumption necessary to assert SPH, respectively WSPH.

Indeed it can be easily verified that ψ(z) := 1
z is a conformal mapping of the set Ĉ \ E onto the

belt K :=
{
z ∈ C : − 1

4 < <z <
1
4

}
. Furthermore it is known that Ψ(w) := cot(π · w) is a conformal

mapping of the belt K onto the set Ĉ\B(0, 1). Consequently by theorem 1.11.c we have for all z ∈ C\E

ΦE(z) = |Ψ ◦ ψ(z)| =
∣∣∣cot

π

z

∣∣∣ =
∣∣∣∣cosπ/z
sinπ/z

∣∣∣∣ =
∣∣∣∣eπi/z + e−πi/z

eπi/z − e−πi/z

∣∣∣∣ =
∣∣∣∣e2πi/z + 1
e2πi/z − 1

∣∣∣∣ ,
and specifically we see that for 0 < y ≤ 2 we have

ΦE(y · i) =
∣∣∣∣e2π/y + 1
e2π/y − 1

∣∣∣∣ = 1 +
2

e2π/y − 1
= 1 +

2e−2π/y

1− e−2π/y
< 1 + 3e−2π/y.

On the other hand it is obvious that

dist(y · i, E) =
√

4 + y2 − 2 =
y2√

4 + y2 + 2
≥ y2

5

and therefore the set E cannot admit  LS.

We finish with an interesting application of the extension property.
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Proposition 10.16. Assume that the compact set E ⊂⊂ C is the sum of two polynomially convex,
disjoint compact sets, i.e. E = A ∪ B, A = Â, B = B̂ and A ∩ B = ∅. Assume also that k, u ≥ 1. If
both sets A and B admit EXP(k, u), then the set E admits EXP(k, u+ 4).

Conversely if both sets A and B are additionally non-polar and the set E admits EXP(k, u), then
both sets A and B admit EXP(k, u+ k).

Proof. In order to prove the first assertion, we first note that if f ∈ s(E) then f|A ∈ s(A) and
f|B ∈ s(B). Subsequently we find extensions for f|A and f|B by applying the property EXP(k, u) for
the sets A and B, respectively. It is easy to see that, by using an appropriate cutoff function, we can
glue these two separate extensions into one extension for the function f , meeting all the requirements
of property EXP(k, u+ 4) for the set E.

The second assertion follows straight from lemma 8.29. Indeed we can extend an arbitrary function
f ∈ s(A) to the set B by putting f(z) := 0 for all z ∈ B. By the lemma we have for this extension
f ∈ s(E) and

∀` ≥ 1 : |f |` ≤ (c · `)` ·
(
|f|A|` + |f|B |`

)
= (c · `)` · |f|A|`,

where the constant c ≥ 1 depends only on the sets A and B. Hence we can apply property EXP(k, u)
for the set E to obtain another extension f̃ ∈ A∞(E) ⊂ A∞(A) and we see that this extension meets
the requirements to assert EXP(k, u+ k) for the set A. Obviously an identical argument applies to the
set B. �

Corollary 10.17. Assume that the compact set E ⊂⊂ C is the sum of two polynomially convex,
disjoint, non-polar compact sets, i.e. E = A∪B, A = Â, B = B̂, A∩B = ∅, capA > 0 and capB > 0.
If the set E admits GMI(k), where k ≥ 1, then both sets A and B admit GMI(k′) for any k′ > k + 1.

Proof. Theorem 10.4 implies that the set E admits EXP(k + 1, 4) and from proposition 10.16 it
follows that the sets A and B admit EXP(k + 1, k + 5). Hence we can apply theorem 10.4 again to
deduce GMI(k′). �
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CHAPTER XI

OPEN PROBLEMS

Below is a review of some open problems related to the topics discussed in this dissertation. Some
of them have been studied intensively already by other specialists in the field, while the rest of them is
strictly related to new ideas introduced here.

Problem 11.1. Suppose that a compact set E ⊂⊂ C is the sum of two disjoint, polynomially convex
sets: E = A ∪B, A = Â, B = B̂, A ∩B = ∅. If the set E admits GMI, does this imply that the sets A
and B also admit GMI?

Corollary 10.17 solves this problem only under the additional assumption that the sets A and B are
non-polar. Clearly also if the set E admits LMP, then by remark 3.2 both A and B admit LMP and
thus GMI. But what happens if the set E does not admit LMP nor JP and one or two of the sets A
and B is polar?

By the way, the conjecture is clearly not true if we allow the sets A and B to share even one common
point.

Problem 11.2. Although the class of (m, s, κ)-perfect sets defined in chapter 4 gives significant
insight into the geometry of sets admitting WLMP, simultaneously we see that there remain obvious
gaps to be filled. The geometric conditions contemplated in proposition 4.7 are not equivalent to
(m, s, κ)-perfectness and that’s why we obtain suboptimal and actually slightly awkward assertions in
corollaries 4.8, 4.16 and 4.17.

So how can we characterize (m, s, κ)-perfect sets, specifically when 1 ≤ s < m? Could it be possible
that sets admitting LMP(m, k) are (m, 1, κ)-perfect for all κ ∈ N \ {1}? Interestingly, L. Bia las-Cież
was able to prove (personal communication, see also [Frerick, corollary 4.10], [Altun-Goncharov], [Gon-
charov 1], [Eggink, theorem 10.1] and [Tidten 2, theorem 2]), that (m, 1, κ)-perfect sets admit Whitney’s
extension property. Maybe this framework can be used to prove HCP?

In this context the work of L. Carleson and V. Totik should be mentioned. They have formulated a
criterion for HCP in terms of capacities, very similar to Wiener’s criterion for L-regularity. Even more
interestingly, whereas for compact sets on the real axis this criterion is equivalent to HCP [Carleson-
Totik, theorem 1.1], in general for sets on the complex plane an additional cone condition or quantitative
condition is needed [Carleson-Totik, theorem 1.2]. These latter two conditions are clearly linked to the
examples mentioned in chapter 10. See also [Siciak 4].

Problem 11.3. By corollaries 2.10, 4.12 and 10.10 a compact set on the real axis that is uniformly
perfect admits WSMI(1), HCP and LMP, respectively. But does it also admit SMI(1, k) and LMP(1, k)
for some k ≥ 1?

Problem 11.4. Is it possible to construct in proposition 6.8 cutoff functions u ∈ C∞(C), which
decline with the radius ε? If yes, then there would be no need to modify their construction in proposition
10.3 and consequently in theorem 10.4 we would have GMI(k) =⇒ EXP(k, 4).

Problem 11.5. Is it otherwise possible to improve the coefficients in theorems 7.10 and 10.8?

Problem 11.6. Does each polar set in the complex plane admit JP? If yes, then this would render
another proof of the fact, proven by L. Bia las-Cież [Bia las 2], that compact sets in the complex plane
admitting GMI are not polar.

Problem 11.7 [Pleśniak 1, open problems]. We still don’t know whether all compact sets in the
complex plane admitting GMI are L-regular. For sets on the real axis this problem was solved by the
combination of the results of [Bos-Milman] and [Bia las-Eggink 1]. This problem seems to be closely
connected with problems 11.1 and 11.6.
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Problem 11.8. Is it possible to weaken the assumptions of lemma 8.22 (and consequently theorem
8.24) by replacing HCP with GMI, without assuming L-regularity? If yes, then we would have

GMI∧  LS =⇒ GMI∧ JP =⇒ EXP∧ JP =⇒ SPH∧ JP =⇒ LMP∧  LS =⇒ GMI∧  LS .

If not then there must exist a set, which admits GMI but not HCP, showing that there is no equivalence
between these two properties. In order to prove this, it would be sufficient to construct a set admitting
GMI and  LS, but not admitting LMP.

Problem 11.9. Example 10.15 shows that the property JP is not the weakest possible assumption,
which in conjunction with property EXP allows to assert SPH in theorem 10.7 for any polynomially
convex compact set in the complex plane. In which direction should we search for such a weakest possible
assumption?

A simple generalization of the property JP clearly does not do the trick. Indeed it is already defined
in terms of a very narrow class of functions, i.e. functions that are holomorphic in some large open
neighbourhood of a fixed compact set, while the regular norm on that neighbourhood is the most
convenient possible and the dependence on δ cannot be weakened further.

Could the property that A∞(E)|E = s(E) have anything to do with this? Note that if a compact
set E ⊂⊂ C admits this property as well as EXP, then we can apply EXP to any function of the class
A∞(E)|E in order to obtain an estimate for its quotient norms in terms of its Jackson norms. Moreover,
thanks to the continuity of the map C(E) 3 f −→ distE(f,Pn) ∈ R, for any n ∈ Z+, the space s(E)
is complete in its own Jackson topology. Consequently, by Banach’s open mapping theorem [Rudin 1,
theorem 2.11], the Jackson and quotient topologies coincide. This in turn by itself implies GMI for any
set that is A∞-determining, just like in the second part (⇐=) of the proof of theorem 9.2 [cf. Pleśniak
1, theorem 3.3.iv-v].
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NOTATIONS

symbol stands for

Ĉ the extended complex plane
R+ and Z+ the sets of non-negative real respectively integer numbers
k,m, s, v the main coefficients used in the analysed properties
a, b, c, d some irrelevant constants, usually dependent on the set E
int ` the integer of a positive number `

z = x+ y · i a point in the complex plane
x or t a point on the real axis of the complex plane
arg z the argument of a complex number
r the radius of a ball
δ a distance

B(z, r) or simply B a closed ball centred in z with radius r
[z0, z1] a closed interval
(m, s, κ)-perfect sets see definition 4.5
E or K a compact set in C or R
I an interval in C or R
intE the interior of the set E
convE the convex hull of the set E
Ê the polynomial hull of the set E
Eδ a closed neighbourhood of the set E as defined in definition 1.13
K(E, δ) a closed neighbourhood of the set E as defined in definition 8.15
∂E the boundary of the set E
∂Et all points for which the distance to the set E equals t
Ω an open domain in C
Ω̄ the closure of the domain Ω

diamE the diameter of the set E
dist(z, E) the distance between the point z and the set E
dist(E,K) the distance between the sets E and K
capE the logarithmic capacity of the set E

P(C) or simply P the space of polynomials with complex coefficients
Pn(C) or simply Pn the space of polynomials of degree n or less with complex coefficients
Pn(R) the space of polynomials of degree n or less with real coefficients
C∞(C) the space of functions on C that are infinitely differentiable (smooth)
A∞(E) the space of functions of the class C∞(C) that are ∂̄-flat on E
H∞(E) the space of functions of the class C∞(C) that are holomorphic

in some open neighbourhood of the set E
C(E) the space of functions that are continuous on a compact set E
s(E) the space of functions that can be rapidly approximated by polynomials
E(E) the space of Whitney fields
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symbol stands for

p or q (holomorphic) polynomials
deg p the degree of polynomial p
n the degree of a polynomial
|p|mB and |p|B see definition 2.3
ΦE Siciak’s extremal function of the set E
Φn functions used in the definition of the extremal function
gE Green’s function of the set C \ Ê with its pole at infinity
C(E, ρ) the level sets of the extremal function ΦE

f a function of class C∞(C) or narrower
f|E the function f confined to the set E
∂f
∂z and ∂f

∂z̄ the partial derivatives of a complex function f

f ′, f (`) the first and subsequent derivatives of a holomorphic function
Lnf( · ) a Lagrange interpolation polynomial of degree n for the function f
T `z0f the Taylor polynomial of the function f of degree `− 1 around the point z0

R`z0f its remainder
distE(f,Pn) the distance on the set E between function f and Pn
supp f the support of the function f

‖f‖E the usual supremum norm
|f |E,` and ||f ||E,` norms defined in definition 5.1
|||f |||E,` Whitney norms defined in definition 5.5
f E,` quotient norms defined in definition 6.1

〈〈f〉〉E,` holomorphic quotient norms defined in definition 6.5
|f |` Jackson norms defined in definition 8.1
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[Eggink] R. Eggink, Nierówność Markowa na p laszczyźnie zespolonej (1994) (unpublished Master’s thesis).
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