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PREFACE

In the spring of 1993 prof. L.P. Bos and prof. P.D. Milman circulated a preprint titled ” A Geometric
Interpretation and the Equality of Exponents in Markov and Gagliardo-Nirenberg (Sobolev) Type In-
equalities for Singular Compact Domains”, in which they proved the equivalence of a local and global
Markov inequality for polynomials on compact sets in RY, N € N. They were able to achieve this re-
markable result by defining and ultimately proving the equivalence of several Sobolev-type inequalities
and extension properties for smooth functions.

The assignment for my Master’s thesis, written in 1994 under the supervision of prof. J. Siciak, was
to attempt to generalize the work by L.P. Bos and P.D. Milman for the case of compact sets in the
complex plane. At that time I succeeded only to a very limited extent, but some (partial) results and
ideas proved to be useful in subsequent research of the problem. The main difficulty lay in finding
suitable generalizations of the respective properties, the lack of an equivalent of the classic Jackson
theorems in the complex plane and obviously its complex structure.

Jointly with dr. L. Bialas-Ciez we have continued this research during the past eight years. We
published one joint article titled ”L-regularity of Markov Sets and of m-Perfect Sets in the Complex
Plane” in the journal Constructive Approximation [Biatas-Eggink 1] and we submitted for publication
our second article titled ”Equivalence of the Local Markov Inequality and a Sobolev Type Inequality
in the Complex Plane” [Biatas-Eggink 2]. In this dissertation I present and expand upon the results of
these two articles, as well as subsequent research, which will be part of the source material for our next
two articles with the working titles ”Lojasiewicz-Siciak Inequality of Green’s Function and a Version of
Jackson’s Theorem in the Complex Plane” and ” Equivalence of the Global and Local Markov Inequalities
in the Complex Plane”.

Our main result is that the entire proof by L.P. Bos and P.D. Milman can be generalized to the
case of a compact set in the complex plane, provided however that for this set we have an additional
assumption to compensate for the lack of Jackson’s theorem. Indeed we know now that without such an
additional assumption, the global Markov inequality does not imply the local Markov inequality in the
complex plane. We are still searching for the weakest possible additional assumption needed to obtain
equivalence, but in this dissertation I propose a sufficient assumption under the name Jackson Property.
Furthermore we have only just started to study the complex structure of sets without this property.

The contents of this dissertation can be outlined as follows. Chapter 1 contains a brief reminder of
the preliminaries needed to understand the rest of the text, mostly by reference to the work on related
subjects by well-known authors. In chapter 2 several versions of local Markov inequalities are studied,
mostly for the sake of completeness and comparision with the version introduced by L.P. Bos and P.D.
Milman, presented here in chapter 3.

Chapter 4 deals with the geometric structure and logarithmic capacity of sets admitting the Local
Markov Property. It is proven that these sets are (m,oo)-perfect, which was conjectured earlier in
[Eggink], and this in turn yields L-regularity.

Chapters 5, 6 and 7 give a complete proof of the generalization of [Bos-Milman, theorem A}, which
asserted the equivalence of the Local Markov Property and Sobolev-type inequalities in different norms.
Particular care is taken to formulate the last of the Sobolev properties in such a way to make it appear
as weak as possible, so that it can easily be deduced from an extension property.

In chapter 8 the Jackson Property is introduced together with some straightforward examples. More
importantly, a refinement of Runge’s theorem allows to link this property with the behaviour of Siciak’s
extremal function. Accordingly, it is proved that sets admitting the Holder Continuity Property as
well as the Lojasiewicz-Siciak inequality, i.e. estimates for the extremal function from above and below,
respectively, admit also the Jackson Property.
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Chapter 9 generalizes, to the extent possible, the original extention theorem for sets admitting the
Global Markov Inequality, due to prof. W. Plesniak for compact sets in RY and based on his earlier joint
work with prof. W. Pawtucki [Plesniak 1]. It served as the starting point for the extension property used
by L.P. Bos and P.D. Milman, which is redefined here in chapter 10 for compact sets in the complex
plane. This chapter culminates with our main result announced above, which corresponds to [Bos-
Milman, theorem B]. On the other hand it also gives an example, brought to our attention by J. Siciak,
showing that the Jackson Property is not the weakest possible assumption needed to derive the Local
Markov Property from the Global Markov Inequality.

Finally chapter 11 discusses a handful of open problems, which are the subject of our ongoing research.
For the convenience of the reader, at the end of this dissertation there is a graphical overview of its
results.

It should be noted that there is a rich literature concerning many different versions and aspects of
Markov-type polynomial inequalities and related topics, see e.g. [Plesniak 3] or [Plesniak 5] and [Frerick]
for excellent surveys. Most authors however are preoccupied with sets in RY. In the complex plane, the
notion of a compact set that is e.g. uniformly polynomially cuspidal, Whitney p-regular or semi-analytic
becomes trivial, because every connected set admits a local and global Markov inequality. Therefore we
are really most interested in sets that are totally disconnected or otherwise highly irregular.

No attempt whatsoever has been made to generalize any of these results for the multivariate case
in CV, where N € N\ {1}, nor for LP norms. On the other hand a lot of attention was paid to
producing self-contained if not simplistic proofs and optimizing the main coefficients, which naturally
does not imply, that they cannot be improved further. Any shortcomings in this dissertation are solely
my responsibility.

Foremost I wish to extend my special gratitude to L. Bialas-Ciez for our fruitful mathematical co-
operation throughout the years, which also included a significant amount of crucial practical support. I
am much obliged to my academic advisor and friend prof. A. Edigarian for motivating me to finish this
dissertation. Furthermore I take the opportunity to thank all my former teachers and fellow students
at the Institute of Mathematics of the Jagiellonian University in Cracow for a wonderful educational
experience. Finally this work would not have been possible without the patient support of my loving
wive Elzbieta and our sons Mateusz, Ryszard, Aleksander and Przemystaw.

Raimondo Eggink
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CHAPTER 1

PRELIMINARIES

The reader is assumed to be acquainted with basic academic courses in real and complex analysis
like e.g. [Leja 2], [Lojasiewicz] or [Rudin 2], as well as potential theory, e.g. [Tsuji 2] or [Ransford].
Furthermore we will use the following definitions and facts, all well known to specialists in the field.

In the year 1889 A.A. Markov proved his famous polynomial inequality:

THEOREM 1.1 [Markov].

VneN VpePn ¢ [Py < n® - llplli-1-

Equally well known is S.N. Bernstein’s inequality for trigonometric polynomials [Bernstein 2, chapter
1], which translates to a Markov inequality for the closed unit ball in the complex plane.

THEOREM 1.2.

VneN VpePn : |PllBoa) < n-plBo1)-

Comprehensive proofs of these theorems can be found in the handbooks [Plesniak 4, chapter 11],

[DeVore, chapter 4 §1], [Rahman-Schmeisser, chapter 1] or [Cheney, chapter 3 section 7].

DEFINITION 1.3. A compact set E CC K, where K = C or R, admits the Global Markov Inequality
GMI(k) where k > 1, if
IM>1 YneN YpeP,K) : |pllg<M-nf-|p|e.

We will write that the set E admits GMI if it admits GMI(k) for some & > 1. We employ the usual
supremum norm, i.e. |p||g := sup,cg [p(2)].

REMARK 1.4. Note that if a compact set E CC R admits GMI(k) for real polynomials, then as a set
on the complex plane it admits GMI(k) for complex polynomials too.

Furthermore the property GMI(k) is invariant under a linear change of the variable (except for the
constant M, of course).

DEFINITION 1.5 [Leja 2, chapter 11; Fekete]. For a compact set E CC C and n € N we define a set

of n Fekete extremal points, denoted { :En), ey 7(171)} C E. For z1,...,2z, € C we put
Vizi, o y2n) i= H (20 — 24)
1<p<v<n
and subsequently we find a set of n points {dn), ceey ﬁn)} C F such that

‘v(g{"),...,gw)] = max{|V(z1,...,2)| : Z1y..r 20 € E}.

Obviously such a set of points does not need to be unique, but its existence is guaranteed by the
n times

——~
compactness of the set E" = F x ... x E.

REMARK 1.6. For a given set of n Fekete extremal points { f"), cee ,(L")} C E, where n € N\ {1},
we denote
1/(3)
da(B) = T 160 =¢8]
1<pu<v<n

From the papers by M. Fekete and F. Leja concerning the transfinite diameter [Tsuji 2, chapter 11T §5;
Leja 2, chapter 11; Fekete], it is now commonly known that

lim d,(E) =capFE.
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DEFINITION 1.7 [Leja 2, chapter 11]. For a compact set E CC C, any subset of n + 1 distinct

interpolation knots {Cé”), cee 7(1")} C E, where n € N, and a function f € C(E) we define the following

Lagrange interpolation polynomial of degree n:

Luf () = 301 () - Lo (5687
u=0

where for 4 =0,...,n we put
G e - ¢
L on n - v
L, (z,go Lot ) =11 T
v=0,..., n SH v
vn
REMARK 1.8. We see that for all y,v =0,...,n we have
0 ifpu#v
L, (). e ) = ’
s (CV CO Cn ) 1 lf ’u =,
(n)) _ (n)
and thus L, f ({07 )= (&7 ).
If we use Fekete extremal points as the interpolation knots, then for all z € F and p = 0,...,n we
have |Ly, , (z; (g"), e T(Ln))‘ < 1 and therefore
1Enflle < 3 0e || Lo (3687 )| = 1)< e
n=0

Furthermore it is obvious that L, is a linear operator maintaining polynomials of degree n or less.
Consequently if we assume p € P, to be the polynomial of best approximation, i.e. ||f — p||lp =
distg(f, Py) :=infyep, ||f — ¢l|&, then we see that

[Lnf =plle = | Laf = Lu(pie)le = |1Ln(f —pip)lle < (n+1) - || —plle = (n+1) - diste(f, Pn),

If = Lnflle = I(f —p) = (Lnf —p)le < If —ple + | Lnf —plls < (n+2) - dist(f, Pn).

This demonstrates that the Lagrange interpolation polynomials with knots in Fekete extremal points
have good approximation qualities.

DEFINITION 1.9 [Siciak 1; cf. Leja 2, chapter 11]. For a compact set E CC C we define Siciak’s
extremal function with respect to holomorphic polynomials

®p(z) :=limsup /P, (z) forzeC

n—oo

where
@, (z) :=sup{|p(2)| : p€Pn, |plle <1}

Note that we have equivalently

@p(z) = sup {|p(x)]"/ **¥" : peP . degp =1, [lp|s <1f.

DEFINITION 1.10. For a compact set E CC C we define its polynomial hull
E = {zeC :VY%eP [pz)<|ple} = {2€C : &p(z)=1}.

If E = E then we say that the set F is polynomially convex. Note that by the maximum principle for
holomorphic functions, the complement of a polynomially convex set is simply connected.

We summarize below some important properties of the extremal function. Their proofs can be found
in the numerous papers of its creators, e.g. [Siciak 1], [Leja 2] and [Leja 1].
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THEOREM 1.11. Let E CC C be a compact set.
(a) If cap E = 0 then the set E is called polar and furthermore we have

1 if z€ E,
vl = { .
+oo if = ¢ E.
(b) If cap E > 0 then we have
(1) Vzé(C\E . @E(z):egE(Z),

where gg is Green’s function of the set C\ E with its pole at infinity;

N . |2
ii lim

= cap F;

(iif) VpeP VzeC : |p(z)| < (®p())*"" - Iplle,

which is called the Bernstein- Walsh-Siciak inequality.
(c) If the set E is connected, then we have

V:eC\E : ®p(2)=|v(2),

where ¢ : C\ E — C\ B(0,1) is a conformal mapping such that 1)(c0) = co.

DEFINITION 1.12. A compact set E CC C is called L-regular if its extremal function ® g is continuous
on the entire complex plane.

DEFINITION 1.13. For a compact set E CC C we define a closed neighbourhood with radius § > 0:

Es :={z€C : dist(z, E) < d}.

DEFINITION 1.14. A compact set E CC C admits the Holder Continuity Property HCP(k), where
k>1,if

IM>1 VzeE, : ®p(z) <1+ M- dist(z, E)Y/*.
We will write that the set E admits HCP if it admits HCP(k) for some k > 1.

DEFINITION 1.15. A compact set E CC C admits the Lojasiewicz-Siciak inequality LS(s), where
s>1,if

dM >0 VzeE, : ®g(z)>14+ M- dist(z, E)°.
We will write that the set E admits LS if it admits LS(s) for some s > 1.

REMARK 1.16. Note that both properties HCP and LS can be defined equivalently in terms of
Green’s function instead of the extremal function, because for arbitrary ¢ > 0 we have

et —1

14 gp(z) <) = Pp(z) <1+ ~9(2)

for all z € C\ E, such that 0 < gg(z) < t.

COROLLARY 1.17. For a compact set E CC C we have the following implications:

HCP = L-regularity = cap E > 0.
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PROPOSITION 1.18 [Plesniak 1, theorem 3.3.ii]. For a compact set E CC C and k > 1 the following
conditions are equivalent:

(i) GMI(k) de. IM>1 VYneN VYpeP, : |pg<M-n* |pl|e,
(i) M >1 VneN YpeP, : |pls,,. <M-|pls.

PROOF. (i)=(ii) We put M := eM. Fix arbitrary n € N and p € P, so that for any point zy € C
) ,
we have p(2) = Y7 %(!ZO) -(2 —20)7. Specifically, if for an arbitrary point z € Ej /,x we select a point
20 € E such that |z — 2| = dist(z, F) < -1, then we obtain

A

n ) )
pl < Y e dis s
j=0 ’

By iteration of GMI we see that ||p¥) ||z < M7 -n*J . ||p||z and therefore

M b3 ol 1 =
p(:)] <3 T s <M plls = M - ol
=0

(il)=(i) We put M := M. Fix arbitrary n € N, p € P, and z € E. Cauchy’s integral formula tells

us that ) ©
/ p
= — d
P(2) 2mi (€ —2)? ¢
OB(z,1/nk)
and thus
1 N2, . Iplle,,.  —~
/ < . e gl = /T < Mk =M - -nk. .0
WS 5o [ ke = S < BTl = M
0B(z,1/nk)

PROPOSITION 1.19. If a compact set E CC C admits HCP(k), where k > 1, then it also admits
GMI(k).

PROOF. By the assumption, if dist(z, E) < 1 then ®p(z) < 1+ M - dist(z, E)'/*. Fix arbitrary
n €N, p€ P, and z € Ey k. Then by the Bernstein-Walsh-Siciak inequality we obtain

p(2)] < (@£(2)" - Iplls < (14 M - dist(z, B)*) " [l <

1/k\ " n
1 M
< <1+M- () ) Aolle = (143) - lvlle < e ol

So we see that the set E admits condition (ii) of proposition 1.18, where M:=eM. O

REMARK 1.20. It is widely known that every continuum in the complex plane admits HCP(2) and
thus GMI(2). L. Bialas-Ciez and A. Volberg proved in [Biatas-Volberg, proposition 5.1] that the Cantor
ternary set admits HCP, with a coefficient that is still the subject of ongoing research.

ProrosiTiON 1.21. If a polynomially convexr compact set E CC C admits GMI, then it is perfect.

PROOF. By the assumption we have
AM>1 3Fk>1 VneN YpeP,(C) : |[ple<M-n*|p|e.

Let’s assume to the contrary that the set E is not perfect and therefore we can find an isolated point
zo € E, so that the set E'\ {20} is compact, polynomially convex and zg ¢ E \ {z0}. Therefore there
exists a number a > 1 such that

CI)E\{ZO}(ZO) > a.
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Consequently we can also find a polynomial p € P such that degp > 1, [|p|| g\ (2,3 < 1 and |p(20)| > ades?,
Now for n € N we put ¢,(z) := (p(z))n - (2 — 2p) so that g, € Pr.degp+1. We see that

OnllE\iz0) <P BNy - SUD |2 — 20| < diam E,
gnllE\ {201 < 1PN (20} zeE\{z0}| |

n(20) =0,
lgnllE < diam B,
g (2) = (p(2))" +n-p'(2) - (p(2)" " - (2 — 20),
|47, (20)| = [p(20)|" > a™ e8P

Finally, by applying GMI for the set E, we obtain for all n € N
a8 < |q)(20)| < | gpllm < M- (n-degp+1)* - [lgn]lp < M - diam E - (n - degp + 1)*,

which is clearly impossible. [

DEFINITION 1.22 [cf. Tidten 2, definition 2]. A compact set E CC C is called m-perfect, where
m > 1, if

Je>1 VyppeE Yo<r<1 {ZEE:TC§|,Z—ZO|§7‘}7$@.
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CHAPTER 1I
LOCAL MARKOV INEQUALITY (LMI)
DEFINITION 2.1 [cf. Eggink, definition 5.1; cf. Wallin-Wingren; cf. Jonsson-Wallin, chapter II §2

definition 2]. A compact set E CC C admits the Local Markov Inequality LMI(m, k), where m, k > 1,
if

YneN dc,>1 Vzpe B YVO<r<1 VpeP,
Cn
19’ | EnB(z0.r) < e 1Pl EnB(20,r)

and additionally ¢, < ¢; - n*. Without the last assumption we speak of the Weak Local Markov

Inequality WLMI(m).

DEFINITION 2.2 [cf. Wallin-Wingren; cf. Jonsson-Wallin]. A compact set E CC C admits the
Surround Markov Inequality SMI(m, k), where m, k > 1, if

YneN dc,>1 Vzpe B YVO<r<1 VpeP,
/ Cn
lp ||B(zo,r) < m ||P||EmB(z0,r)
and additionally ¢, < ¢; - n*.
Inequality WSMI(m).

Without the last assumption we speak of the Weak Surround Markov

DEFINITION 2.3 [Eggink, definition 5.2; cf. Jonsson-Wallin, chapter II §2 proposition 2]. For any
closed ball B := B(zg,r), where z5 € C, r > 0 and m > 1 we define the following norms on P:

Ipl’s izzij' S
; !

Note that this is a finite sum. We also denote |p|p := |p|k.

PROPOSITION 2.4 [cf. Eggink, theorem 5.3; cf. Jonsson-Wallin, chapter II §2 proposition 2|. For a
fized compact set E CC C, m > 1 and n € N, we consider the following conditions:

. ¢
(i) Je>1 VB VpeP, : |plp< e Ipll 2n B,
(i) E admits WSMI(m) for polynomials of degree n,
(iii) E admits WLMI(m) for polynomials of degree n,
(iv) Je>1 VB VpeP, : |plg <c-lplens,
, c-n

(v) Je>1 VB VpeP, : |p ”B(zo,rm) < T ol ens,

. ~ . ; ~ /I
(vi) F>1 VB VpeP, Vi=1,...n : [pW(z)<? (Tm) Nlpllzns
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(vii) E admits WSMI(m) for polynomials of degree 1,

(viii) E is m-perfect.
Here and further in this chapter B stands for a closed ball B(zo,1), where zo € E and 0 <r < 1.
We assert that (i) <> (i) = (iii) = (iv) <= (v) <= (vi) = (vii) < (viii).

REMARK 2.5. Note that trivially we have ||p||ens < |lplls < |p|s- Therefore in the case of a set
admitting WLMI(1), the theorem implies the equivalence of all pairs of norms (|| - ||gns, || - |5, - |B) of
the space P,,, uniformly with respect to B.

Also when n = 1 all contemplated conditions are equivalent.

PROOF OF PROPOSITION 2.4. (i)=(ii) We first note that

G4) 1 G+1) _
g = Z p ’(ZO)‘.TJ:,. Z (j+1).w.7«a+l<

Ip'|B = . <
| |
o<j<n-1 I " o<izn-1 G+1)
) )
<oy PRy,
T - J2¢ T
1<j<n

Therefore for an arbitrary ball B and polynomial p € P,,, we can deduce from remark 2.5 and the

assumption that
n c-n
1P'lls < 1p'ls < - Ipls < = - Il Bns-

This implies WSMI(m) for polynomials of degree n, where we put ¢, := ¢ - n.
(i)<=(ii) By the assumption we have

c
dep, >1 VB VpeP, : ||ps < 77:2 “Ipll EnB-

Applying Cauchy’s integral formula to the polynomial p’ we obtain for j =1,...,n

iy _ G-I [P
9 (z0) | /<< .

2mi —z)?
8B
; (j—1! 1P|l (j—1! (=1 cn
P9 (20)] < : |d¢| = v Ip'l|5 < w1 Ipll EnB-

2 |¢ — zo)7
OB

) .
Therefore we have % 1) < g - ||pllEns and this is obviously also true in the case that j = 0.

This way we obtain

c (n+1)-c
Iplp < Z Tmn,l pllens < ?1” “|IpllEnB

0<j<n

and it suffices to put ¢:= (n+1) - ¢y,
(ii)==(iii) This follows straight from the definitions.
(iii)==(iv) By the assumption we have

C
Je, >1 VB YpeP, : |Plens < — - |pllens-

rm
Tterating this inequality we obtain for j =0,...,n

) Cr \J
IPllzrs < (o) Ipllznz

and consequently

) J
p 20 o C
[P Go)l ey - pll e

4!
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cJ
plE < Y 2 lplens < e - pllns-
0<j<n 7"

Therefore it suffices to put ¢ := e
(iv)=(v) We apply GMI for the ball B(zo, ™), remark 2.5 and the assumption to see that

n n n c-n
Hp/HB(ZO,T"”) < o Hp”B(ZO,"”m) < o |p|B(ZO,r"") = o |p|7§ < m Hp”EﬂB

(v)=>(vi) Again we apply GMI for the ball B(zp,r™) and the assumption to obtain

. . n \Jj—1 n\J
P9 )l < PP < (55) 19 Iperm < e (2) - Ipllns,

so it suffices to put ¢ := c.
(vi)=>(iv) We see that

(49 ) c J )
p 20 . c n . ~
ol = Y Lol < 37 S () o s <7 pllons,

|
o<j<n 7

and in this case we put c:=¢-e™.
(vi)=>(vii) It suffices to note that |p’(z0)| = ||p||z if p € P1, so we can put ¢; :=¢ - n.
(vil)=(viii) By applying the assumption to p(z) := z — zp and j = 1 we see that

1
1< — sup |z — 20,
r z€ENB

which is the same as m-perfectness.
(vii)<=(viii) The assumption that the set E is m-perfect implies that

0<e<l VzpeE YO<r<1 3Fz € ENB(2,7) : |z1—2>c-r™

Fix arbitrary zp € E, 0 < r < 1 and p € Py, so that p(z) = p'(20) - (2 — 20) + p(20). Find a point
z1 € EN B such that |21 — 29| > ¢-r™. Then we can assert that

1 1
Ipllzns = max{lp (o)l Ip (21)]} = 5 - (Ip (o)l + P (21)]) = 5 - Ip (1) = p (20)| =
1
=5 I Gol e =20l 2 5™ o)l = 5o - s

This is equivalent to WSMI(m) for polynomials of degree 1. O

We now see that we can partly generalise proposition 2.4 to the stronger property SMI(m), where
m > 1, by allowing for a variable n € N while controlling the constants ¢ = ¢(n).

COROLLARY 2.6. For a fized compact set E CC C andm, k > 1, we consider the following conditions:

(i) E admits SMI(m, k),
k+1
(ii) de=1 VB VneN VpeP, : |plp < — T Ipllens,
(iii) E admits SMI(m, k + 2),
(iv) 3>1 VB YneN YpeP, : |p|B<c- o |plens.

We have (i) = (i1) = (i13) and (i1) = (iv).

PROOF. (i)==(ii)==-(iii) This follows straight from the proof of (i)<=-(ii) in proposition 2.4. Note
the slight deterioration in the coefficient k.
(ii)==(iv) This follows from the simple observation that |p|y < r™~!.|p|g + |p(z0)]. O
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PROPOSITION 2.7 [cf. Bialas-Eggink 1, proposition 4.2]. If a compact set E CC C is m-perfect,
where 1 < m < 2, then we have

VvneN Jm,>1 Je,>1 VB VpeP, : IMBS;;?QTHMmmB

PROOF. Proposition 2.4 implies that the set F admits WSMI(m) for polynomials of degree 1, i.e.
c
ECZ 1 VB VpEPl : Hp/”B S Tim ||pHEﬁB

Furthermore for m; :=m > 1 and ¢; := 2¢ > 1 we see that

VB VYpePi : |plp< T Ipllens-
In order to prove the assertion by mathematical induction, let’s assume that for some n € N, where
n > 2, we have already proved that

Cn—1
Imp-1>1 3epo1 21 VB VpePnr1 ¢ |plp < Tml:‘lﬁ “|IpllEns-
We put m,, := 22@7;;1 — 1 > 1. Fix arbitrarily a ball B and p € P,, so that we can write

px)= Y aj-(z—=).

0<j<n

If lag| > 37 <y laz] - 77 then we see that

. C
pls = laol + > Jagl -9 <2+ laol =2 p(z0)| < 2+ [pllnn < — - ol s,

my,—1
1<j<n

provided that we put ¢, > 2. Alternatively, in the case that |ao| < 35, ;< |a;] - 77, then we have

. . . 1 . 1
Pla= D d-lal-r ™ 220 3 daglor? > 0= D7 gyl r? = o - Iplae

1<j<n 1<j<n 0<j<n

S| =

We denote B := B (zo, g) From the inductive hypothesis it follows that

(7“/2)7”"*1_1 , ,'nmn,l—l 1 , rmn,l—2
- |p |§ > Cn_1 - omn_1—1 : on—1 ’ |p |B > Cn_1 - Omn_1+n—1 : |p‘B7

n— n n—

”p/”EmB >

because p’ € P,,_1. We can therefore find a point z; € E N B such that

rMn—1—2 B
)| > s ol = e MR,
_1
where we denote M := W < 1. We also put € := (%£2)?=™ < 1 and

B.:=B <2175.T(mn+1)/2> c B

Let q(2) := (2 — 21) - p'(21). By applying WSMI(m) to ¢ € P; we obtain

Cc

—_— ! = / . . mnfliz.
oy lllenn. 2 14l =1 G0l > 0 s
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and thus there exists a point z. € E N B, such that
|Q(Zs)‘ SM-.e™. rmn,172+m~(mn+1)/2 . |p‘B =M. .e™ 'rmnfl . |p|B7

because my,_1 —2+m- (m, +1)/2 =22 (m, +1) —2+m (m, +1)/2 = m,, — 1. Note that M and
€ do not depend on the choice of B and p.

We will estimate p(z) by developing it into a Taylor series around the point z;:

p(2) = p(21) +q(2) +7(2),

@ ,
where 7(2) = 3o i, Jj(lzl) - (2 — z1)?. Naturally we have for j =1,...,n

P2 = Y ap b (=1 (1) (2 z0)

j<t<n

and therefore for arbitrary z € B we obtain

G ()] < . o — s [l < i .H<<ﬁ)j. .l:<ﬁ)j. _
D) <0 Y ael [z =20 <n? - > ag rtT < " > lael v ) clple

j<t<n j<t<n 0<e<n

In particular [pt)(z;)| < (%)J - |p|p and hence for arbitrary z € B. we have

rel s 3 (F) e e (oot -
.

We denote C:= 1. (M -em—e"-e?) =1.cm (M —e"-e>™)=1.em. M. (1-2) independently
of the choice of B and p and we note that 0 < C' < 1. Now if [p(z1)| > C-r™»~1 . |p|p then

1/c 1/C
IplB < e Ip(21)| < perr— IpllEns.

Alternatively if [p(z1)| < C - r™»~1.|p|p then we see that

p(ze)] = Ip(21) + q(22) + r(ze)] = la(ze)| — |p(z1)| = |r(ze)] >
> M.e™m. pmn—l |p|B —C. pmn—l |p|B —em. 52 LMl |p|B _
— (M.gmfc—e”-g) Ml plg = C ™ pl g,
which also implies that

1/C 1/C
pls < —=1 - Ip(ee)l < == - llpllEns-

Finally we conclude the inductive step by putting, independently of the choice of B and p,

1
cn:=5>2. O

REMARK 2.8. A careful inspection of the constants reveals that

m2+m—2 2 o9 m
(=)~

My, = _—,
" m 2—m m
1
4 .2mn 2c2 | (dem)n\ T
C = . .
" 2—m mm
By denoting p := ﬁ > 2 we obtain an estimate for c,:

Cn < 2u-2Mn - (c “Cp—1 - (26)")“.

However, if m = 1 then for all n € N we have m,, =1 and ¢, =8 - ¢* - ¢2_; - (4e)™.

By combining the results of propositions 2.4 and 2.7 we obtain:
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COROLLARY 2.9 [Bialas-Eggink 1, corollary 4.4; cf. Wallin-Wingren]. If E CC C is an m-perfect

set and 1 < m < 2, then for all n € N there exists m,, > 1 such that the set E admits WSMI(m,,) for
polynomials of degree n.

Specifically in the case of m = 1 we have:

COROLLARY 2.10 [cf. Jonsson-Wallin, chapter II §2 proposition 4]. A compact set E CC C admits
WSMI(1) if and only if it is uniformly perfect, i.e. 1-perfect.



16 MARKOV’S INEQUALITY IN THE COMPLEX PLANE

CHAPTER III

LOCAL MARKOV PROPERTY (LMP)

Whereas many different versions of local Markov-type polynomial inequalities are covered in the
literature, the version introduced by L.P. Bos and P.D. Milman seems to be the most universal.

DEFINITION 3.1 [cf. Bialas-Eggink 1, definition 1.2; cf. Bos-Milman, definition 2.3]. A compact set
E cc C admits the Local Markov Property LMP(m, k), where m, k > 1, if

VneN Je,>1 Vzpe B YO<r<1 VpeP, Vji=1,...,n

. en \J
P9 (0)| < (=) - IPlsrs(enn

rm
and additionally ¢,, < ¢;-n*. Without the last assumption we speak of the Weak Local Markov Property
WLMP(m). We will write that the set E admits LMP, respectively WLMP, if it admits LMP(m, k),
respectively WLMP (m), for some m, k > 1.

REMARK 3.2. L.P. Bos and P.D. Milman use a longer construction Jrg > 0 ... VO < r < rg....
This is clearly equivalent to our definition.

We also see that this property is invariant to a linear change of the variable. This in turn implies
that we can split up a compact set £ = AU B, such that ANB = (), in the sense that if the set E admits
LMP or WLMP, then both sets A and B admit the same property. Obviously the converse is true too.

Furthermore the following proposition proves that in the definition of the Local Markov Property we
can restrict ourselves to j = 1, albeit with a deterioration of the constants c,,.

PRrOPOSITION 3.3 [Bialas-Eggink 2, proposition 2.6]. If for a compact set E CC C and m > 1 we
have

VneN dc,>1 Vzxpe E YO<r<1 VpeP,
Cn
' (20)] < m Pl 2nB(20,r)
then the set E admits WLMP(m). If additionally ¢, < c1 - n*, where k > 1, then the set E admits
LMP(m, k +m).

PROOF. Fix arbitrary n € N, zp € E, 0 <r <1, p € P, and j € {2,...,n}. By applying the
assumption to the derivative pU—1 e P, and radius r /n we see that

. Cp * nm .
1P (20)] < —m 1YV BB 2, /m) -

Let 21 be a point of ENB(zo,r/n) such that [pU=Y (z1)| = [[pY=Y| grp(z9,r/n)- Next we obtain similarly

m m
n N Cp N

2
. c . i
‘p(J)(ZO)| < rm : ‘p(J 1)(Zl)| < < m ) ! ”p(j 2)||EﬁB(zl,r/n)~

We continue in this fashion to obtain points z1,2g,...,2;-1 such that for all £ =1,...,j — 1 we have
20 € EN B(z—1,7/n) and [pU=9(2)| = [pY=9| 5ap(ss_y,r/n)- This way we conclude that

() e ™\’
|p (ZO)| < rm ' ”p”EﬂB(zjfLr/n) <

- ™ J ¢ ™ J
m . ||pHEﬂB(zo,j-r/n) < rm : ||p||EﬁB(zo,r)7

IN
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which proves WLMP(m) or LMP(m, k + m), depending on the assumption regarding ¢,. O

REMARK 3.4. If a compact set E CC C admits WLMP(m), where m > 1, then for all zg € E,
0<r<1,neNandpe P, we have

PR = 3 P2 < Y0 e () pllennn ™ <
o<j<n I 0<j<n

1
< Z o . CZ . ||pHEﬂB(z0,r) <e- Cz . Hp”EﬂB(zo,'r)'
0<j<n *’

Compare this with proposition 2.4.

REMARK 3.5. Obviously for any compact set £ CC C and m, k > 1 we have the following strings of
implications:

SMI(m,k) = LMI(m,k) => LMP(m,k) = GMI(k),

¢ U U
WSMI(m) == WLMI(m) = WLMP(m) = m — perfectness.

The vertical implications as well as the first horizontal implications follow straight from the definitions.
The second horizontal implication is obtained by iterating LMI(m, k), respectively WLMI(m), j times
in order to estimate |[p() || EnB(20,r), like in the proof of proposition 2.4. This way, unlike in proposition
3.3, the estimate for ¢, does not deteriorate. The upper third horizontal implication is obtained by
putting » = 1 and j = 1. The lower third horizontal implication follows from applying WLMP(m) with
j =1 to the polynomial p(z) = z — zg.



18 MARKOV’S INEQUALITY IN THE COMPLEX PLANE

CHAPTER IV

POMMERENKE PROPERTY (PP)

DEFINITION 4.1 [cf. Pommerenke, theorem 1]. A compact set £ CC C admits the Pommerenke
Property PP(m), where m > 1, if

<e<l Vzpe E YVO<r<1 cap(EﬂB(zo,r))Zc~rm.

REMARK 4.2. If a compact set E CC C admits PP(m), where m > 1, then obviously it must be
m-perfect. To see this we use the fact that the logarithmic capacity of a ball is equal to its radius, which
can easily be deduced from theorem 1.11. Hence for arbitrary zop € E and 0 < r < 1 we have

cap(EﬂB(zo,r)) >c-rm> M= capB(zo, g ~7"m) > cap (Eﬁ B(zo,g orm)>

oo

and therefore
c
{ZGE : i.rmg |z — 20| ST}#@.

Ch. Pommerenke proved that any compact set F CC C admits PP(1) if and only if it is uniformly
perfect. In this chapter we will introduce the much larger class of (m, s, k)-perfect sets, where m,s > 1
and x € N\{1}. Subsequently we will use these sets to prove that any compact set admitting WLMP (m),
with some m > 1, also admits PP(m/) for any m’ > m?. In particular, by the Wiener criterion, this
implies L-regularity.

DEFINITION 4.3 [cf. Bialas-Eggink 1, section 3; cf. Eggink, definition 4.1]. Denote by B a closed
ball with diameter 0 < diam B < 1. We take smaller balls B;, C B, where i1 = 1,2,...,x for some
k € N\ {1}. Subsequently we take even smaller balls B;, ;, C B;,, where i1,i2 = 1,2,...,x and so on.
We put

1,...,k [e%s}
Ef = By, .. E:=()E
o Tlyeeny 109 L .
TN ) =1

If there exist m,s > 1,0 < a <1 and 0 < b <1 such that for all £ € Z, and 41,...,4p11 =1,2,...,k
we have

(1) diam B =a- (diam By, ;)"

01,005 0041
(2) dist(Bi,,....igp> Biv,...sigw) > b (diam By, ;,)°
for all u,v =1,...,k such that u # v,

then we will call the set E an elementary (m, s, k)-perfect set. Here and in the sequel for ¢ = 0 the
symbols B;, . ;, and By, ., . stand for the sets B and B,,, respectively.

Such a set does not have to exist for arbitrary constants m, s, k,a and b. In order for x smaller balls
to fit in a bigger ball, it is definitely sufficient to require that a,b < i

Elementary (1,1, k)-perfect sets were studied by M. Tsuji under the name ’general planar Cantor set’
in [Tsuji 1; see also Tsuji 2, chapter III §16.2], where he gave an estimate for their logarithmic capacity
and proved that they are L-regular. It turned out that his proof can easily be generalized for elementary
(m, s, k)-perfect sets, however under the condition, that £ > m.
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LEMMA 4.4 [cf. Bialas-Eggink 1, lemma 3.5; cf. Eggink, theorem 4.2]. Let E CC C be an elementary
(m, s, k)-perfect set as above, where m,s > 1 and k € N such that k > m. Then we can assert that

s (k—1)

capE > a=m -b- (diam B) =-m

mes (k—1)

Vepe E VO<r<diamB : cap(EﬂB(zo,r))zaﬁ-bw m—m

. log1/r K—m
lim sup > .
r—0  logl/cap(E N B(zg,r)) ~ s-(k—1)

PRrROOF. From equality (1) we deduce that for each ¢ € Z, we have

(3) diam B;, =q-(damBy;,, 4, ,)" =a- (a~ (diam Bz-lw,i(_Q)m)m =

=q' . (diam Bi17.._,i£72)m2 =...=a%®. (diam B)mﬂ,
where S(¢) :=1+m+...+m’ "L, S(0) := 0. From this it follows that
(4) dist(Biy,... i1 Bin,.oigw) = a* 9@ .. (diam B)s‘mé for all p # v.

The papers by M. Fekete and F. Leja concerning the transfinite diameter [Tsuji 2, chapter III §5;
Leja 2, chapter 11; Fekete], teach us that for every compact set K CC C there exist sets of extremal

points {Z;(LN)},L:L..,,N C K, such that

/(%)
dy(K) = H |Z£N) — 2tV e cap K.
1<pu<v<N

0 _ 1,..,Kk ) ) . n
Therefore for a fixed set B¢ = U“” B;,....i, we can find sets of extremal points {zih._,i(}“:lw,N,

dependent also on N € N\ {1}, located on each B;, _;, such that

/(%)

K _ SV X s . .
(5) H |Zi1 ..... ¢ 2117...,Zg| N—oo cap Bl17~~,l£'
1<p<v<N

This way we obtain ‘- N points {zf‘12 i1, 000 =1,....6, u=1,...,N} C E*, for which we

have (in the notation of remark 1.6)

2

(6) (o n ()2 > 1 Ty - Ty - T1 =2 T,

where

— H .
1L, := H H |Zi17---,iz Bipenyigls

i1,..,0¢ 1<p<v<N

1,..,Kk 1,...,N
- | I | I I | ® _ Y . .
My := |Zi1~,~~,ie—1’ie Zipesie—1,30 10

iyenip—1 1<0p<je<k Qv

. 1,...,s 1,...,N
— I | | I I I I I H — Y . . .
HZ—Q = |Zi1,.“,ig_2,ig_1,ig 211,--47127273271,313 ’
MoV

i1, ig—2 1<t 1<je—1<K i,
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- H — Y )
I := H H H i1 izt ZJl=J27~»-7Je|'
,

We see that Il =11, - I,y -...-II; - I is the product of £+ 1 elements, all dependent on N € N\ {1},
where 11, is determined by pairs of points belonging to the same B;,, . ;,, lI,—1 is determined by pairs
of points belonging to the same B;, .. ;,_,, but to different B;, . i, , 4, and B;, . 4, . j,, and so forth.
Finally IIj is determined by pairs of points belonging to different B;, and Bj,.

Inequality (5), the fact that the logarithmic capacity of a ball is equal to its radius and equality (3)
imply that

1 1,...,k o\ KE
(7) lim Hl/( ) | I cap By, i, = | I 1am By, ip (CL (diam B) .

N —oo . . . 2
T1yeenyle 1000528

In the case of the product II;, where j = 0,... ,¢ — 1, we use inequality (4) to obtain

B

U1,05,0541

2y iz 0 ™ Zinsig o = dist(B;,.. ) >a*50) b (diam B)*"™

L L R B SRRRELY 2 RERSPL 7V E T RSPV 14 Slgsti+10

The number of such pairs of points in the product II; is equal to x7 - ( ) 2(t=j-1). N2 = %1 kH-IT1L N2,

Consequently we have
K1 20—j—1 N2
2

In; > (aS'SU) b (diam B)S'm]) :

-1 1
logHj2L2 k2 .NZ.
K

< (s-S(j) ~10ga+10gb+s-mj-logdiamB).
K

From this it follows that
log (Hg_l . Hg_g el Ho) = ZIOgH] >

k—1 = S(j) logb my\J
>~/<52Z.N2-Z<s~loga~‘?+g,+s~logdiamB'() )
2K = K7 K K

By putting this into inequality (6) and applying equality (7) we obtain

2
log d,e.n(E%) >

- (log Ty + log(ITe_y - ...~ TI
2 TN =1 (osTle - log(Mle 0)),

1 S() . di B)™
logcap E = lim logd,..y(E%) > — -log a4 (diam B) +
N—oco 1‘4/22

k—1 = 10 b /-1 mAd
+ | s-loga Z g + s -logdiam B - (7)
k £ K
j=0 j=0
Since k > m and E' > E2 > ... D N2, E* = E, we see that
logcap E = Zlim log cap E! >
> lim S(€) -loga + m* - log diam B — log 2 et loga- Z j logb | §-logdiam B
{—00 KZZ K 1 1 %

It is easy to verify that

. j ifm =1
SU= war st



MARKOV’S INEQUALITY IN THE COMPLEX PLANE 21

and in either case

S~ S0) _ K
Z ki (k—m)-(k—1)

§=0
Finally we obtain
logcap £ > i -loga—&—logb—&—w-logdiamB,
Kk—m K—m
capE > a=m - b - (diam B) E=
Now fix an arbitrary point 2y € E = ﬂ;il UZIIKM B, .., and 0 < r < diam B. Find ¢y € Z; and

i1,...,1%4, such that zg € Bihm,% and a-r"™ < rg := diamBihm,i,_]o < 7. Then EN Bil)mmo is also an
elementary (m, s, k)-perfect set with the same constants a,b > 0 as the set E and therefore we have

s s (k—1) s s (r=1)

Cap(E N Bil:--wilo) Z ar—m - b- (dlam Bil;u-yiéo) r—m = a*‘;m .b- 7”0’{7m )

Simultaneously we have E N B(zp,r) D EN B(z0,70) D EN By, and this leads to

,,,,, g

log cap(E N B(zo, 7)) > logcap(E N B(z0,70)) > logcap(E N Bi, i, ) >

s ' —]_ s * _1
Zlog(amb)+wlogro>log(amb).*.wlog(arm):
K — K—m

s (k—1
:log(am_bww.by.

K—MmMm

We conclude that

m-s-(k—1)

cap(E N B(z,7)) > ar-m -b-r w=m

)

.. log1/r K—m
lim inf > ,
r—0 log1/cap(EN B(zo,r)) ~ m-s-(k—1)

but also

. log1/r
lim sup 2
r—0  log1/cap(E N B(z,r))
log 1 -
lim —— 0g1/mo ; __FZm g
700 7&’&_ ) . log1/rg — log (a7 -b) - (k—1)

m

DEFINITION 4.5 [cf. Bialas-Eggink 1, definition 3.1; cf. Eggink, definition 4.3]. A compact set
E cc Cis called (m, s, k) — perfect, where m,s > 1 and x € N\ {1}, if there exist constants 0 < a < 1
and 0 < b < 1 such that for all zy € E there exists an elementary (m, s, k)-perfect set E,, with constants
a,b and diam B =1, so that zp € E,, C E.

If a set is (m, m, k)-perfect, then we will call it simply (m, k)-perfect. Finally, if a set is (m, k)-perfect
for all kK € N\ {1}, then we will call it (m, co)-perfect.

THEOREM 4.6 [cf. Bialas-Eggink 1, proposition 3.6; cf. Eggink, corollary 4.4]. If a compact set
E cc C is (m,s, k)-perfect as above, where m,s > 1 and k € N such that kK > m, then we can assert
that

capE >capE,, > amm - b,

m-s-(k—1)

Vepe B YO<r<1 cap(EﬁB(zO,r))zcap(EZOQB(zo,r))Zaﬁ'bw w—m

. log1l/r K—m
lim sup > .
r—0 log1/cap(ENB(z,7)) ~ s (k—1)

Consequently the set E admits PP (%ﬁ;l)) and by Wiener’s criterion it is L-reqular.

Proor. This follows straight from the definitions, lemma 4.4 and Wiener’s criterion [Tsuji 2, theorem
III 62, corollary 2] . O
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PROPOSITION 4.7 [cf. Bialas-Eggink 1, lemmas 3.2 and 3.3; cf. Eggink, theorem 4.5]. For a fized
compact set E CC C, m,s > 1 and k € N\ {1} we consider the following conditions:

(i) 0<ec<l Vzpe B YO<r<1 3Fz,...,2,—1 € ENB(z0,7)
|z — 2| > c-r™  forall p,v=0,...,k—1 such that p # v,

(ii) E is (m, k)-perfect,
(iii) E is (m, s, k)-perfect,
(iv) 0<ec<l VzpeE YO<r<1l 3z,...,24—1 € ENB(z,7)

S

|2y — 2| > c-r™* forall p,v=0,...,k—1 such that pn # v.

We assert that (i) = (i1), (i1) = (i#i1) provided that s > m, and (iit) = (iv) regardless of s > 1.

PROOF. (i)== (ii) For an arbitrary point zy € E we will construct by induction an elementary
(m,m, k)-perfect set E., with constants a = b = 547 and diam B = 1 such that zop € E,, C E. We
start by putting B := B(z,70), where 7o := %, so that diam B = 2ry = 1.

Assume that we have already constructed balls B, ;, = B(2i,,...i,,7¢) for all £ < £y and i1, ...,4¢ =
1,...,k, as stipulated by definition 4.3, and assume that z;, . ,, € E. Note that according to equality
(1), the diameter of the ball B;, . ;, depends only on ¢ and not on the choice of 41, ..., 1.

Now for fixed 41,...,%, = 1,...,k we apply assumption (i) to the point Ziy,icg i = Rinyeis, a0
radius %wo. Therefore there exist « — 1 points, which we denote z;, .. ity g where j =1,...,k—1, such
that

7‘@0

Zi1,~~7ieo7j cFENB <2i17___7i£0, 7) fOI"j = 1, Lo R,

Teo \™
|Zi .. igg s = Zineomrieg ] = € (70) for p,v =1,...,k, such that u # v.

e _ 1 — s
We put 1,41 1= g5m Tpn = 50-(2rg,)™ and Bi ... igg i = B(Z1;17___,i[07j,7”[0+1) for j =1,...,x because
this way we have diam B;, i, j = 21,41 = a - (2re,)™ =a- (dlamBih___Mo )™ and

C
dist(Biy,... iy s Bin,.oyieg ) = |Zin,sivg it = Zinsennsig | — 27041 2 5 gm T =0 (diam By, ..., )

for all u,v =1,...,k such that p # v. We also see that Bi,....ivg.i € Bir,....i, because

c m o 1
Tto+1 F [Zirenivgd = Zinseieg| S g Tho T 5700 < Tto-

We repeat this construction for all ¢1,...,4, =1,..., and then we increase ¢y. This way we obtain
an elementary (m,m, k)-perfect set with constants a,b and diam B =1

oo 1,
ro=() U

=1 7;1,..‘71

K

B ...
£

ste

Note that zg € E,, because zg = 2 = 2,k = Zk,r,x = --. and therefore this point is an element of all
: 1

unions ;7" By,

It remains to verify that £, C E. For an arbitrary point z € E,, we can find the unique sequence

il, i27i3, ... for which

VweN : ze€ Bil,mfie'
1 .
We see that |z — 2, .4, < 5 -diamB;, 5, = ¢ P 0, hence z;,.. ., o Because by the

construction z;, .. ;, € I/ and the set F is compact, so we must have z € F, which proves that F,) C E.
(ii)==-(iii) This implication is trivial, provided that s > m.
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(iil)=>(iv) Assume that the set E is (m, s, k)-perfect with constants a,b > 0. By definition 4.5,
for arbitrary zg € F and 0 < r < 1 we can find an elementary (m, s, k)-perfect set E., such that
20 € E.,, C E. We denote E., = (2, Ulll" B

g T Lyl [T )
a5 . (diam B)m’Z = a®®), because diam B = 1. We find the unique ¢ € N for which o) < r < ¢3¢~
and 41,...,% such that 29 € B;, .. ;. Exactly one of the balls B;,, . ;, j, where j = 1,..., s, contains
the point zq, say the last one. Consequently from each of the remaining balls we can select an arbitrary
point z; € EN By, .. 4,5, where j =1,...,k — 1, so that we have

By equality (3) we have diam B

2j € By, ..ij C Biy,...i, C B(20,diam B;, .. ;,) =B (Zovas(z)) C B(zo,7),

|2, — 2,| > dist (B; Biy.iyw) > a*50 = g5 (meste=n+1) 4

1y b0, 10

:as~<as(é_1)) .~b2a5~rm's~b for all u,v =1,...,k such that u # v,

where we denote z, := z9. This proves condition (iv) with the constant ¢ :=a®-b. O

COROLLARY 4.8 [Bialas-Eggink 1, theorem 3.4; Eggink, corollary 4.6]. Any m-perfect set is (m,?2)-
perfect. Any (m,2)-perfect set is m?-perfect.

PROOF. Definition 1.22 implies that a compact set E CC C is m-perfect if and only if [Siciak 2,
proposition 0.1]

(8) H0<c<l VzgeE YO<r<1 3z € ENB(z0,7) : |21 —20>c-r™.

Therefore it is sufficient to apply proposition 4.7 with s :=m and k := 2. [
COROLLARY 4.9 [Bialas-Eggink 1, theorem 3.7]. All m-perfect sets with 1 < m < 2 are L-regular.
PRrOOF. This is a direct consequence of corollary 4.8 and theorem 4.6. [

REMARK 4.10. If a compact set is m-perfect and hence (m, 2)-perfect, where m > 2, while it is not
(m, k)-perfect with some x > m, then it may have zero logarithmic capacity and consequently not be
L-regular. Such an example of a Cantor-type set can be found in [Siciak 2, example 2.2].

A. Goncharov [Goncharov 2, corollary 3.1] also found m = 2 to be the boundary value for the
existence of a continuous and linear extension operator from the space of Whitney fields £(K) to C*°(R)
for m-perfect Cantor-type sets K CC R.

On the other hand, for any fixed m > 1, A. Goncharov and H.B. Uzun [Goncharov-Uzun, example 2]
have constructed a compact set on the real axis, which is m-perfect but not p-perfect for any p < m,
and it admits HCP(8m).

Furthermore they have constructed an example [Goncharov-Uzun, example 1] of a set, which is m-
perfect and actually also (m, co)-perfect for any m > 1, while it is not uniformly perfect and it does not
admit GMI.

J. Lithner generalized the result of [Bialas-Volberg] concerning the Cantor ternary set to prove the
following theorem.

THEOREM 4.11 [Lithner, theorem 5.1; cf. Siciak 5]. For 0 < ¢
elementary (1,1, 2)-perfect sets with constants a = b =t and diam B
admit HCP with constants M,k > 1 dependent only on t.

denote by & the family of

<
= Then all sets in this family

1
37
1.
COROLLARY 4.12. Any uniformly perfect set admits HCP.

ProoOF. Corollary 4.8, the first part of the proof of proposition 4.7 and definition 4.5 imply that any
uniformly perfect set is the sum of elementary (1, 1,2)-perfect sets belonging to the family &, where
t:= £ depends only on the constant c in equality (8). This then leads to HCP by theorem 4.11. [

Combining this with remark 3.5, we obtain the main result of [Lithner].

COROLLARY 4.13 [Lithner, theorem 6.2]. If a compact set E CC C admits WLMI(1), then it also
admits HCP and GML.

REMARK 4.14. L. Bialas-Ciez has proved in [Bialas 1] the equivalence of the properties WLMI(1),
HCP and GMI for all Cantor-type sets used by W. Pledniak [Plesniak 2].
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THEOREM 4.15 [cf. Bialas-Eggink 2, theorem 4.3]. If a compact set E CC C admits WLMP(m),

where m > 1, then it is an (m, co)-perfect set.

PrOOF. We assume that

VneN Je,>1 Vzpe E YVO<r<1 VpeP, Vji=1,...,n

Cn

. J
P9 (0)| < (7m) " IPlsrse0n-

Fix an arbitrary point zp € E, 0 <7 <1 and x € N\ {1,2}. We will show that there exists a constant
0 < a,, <1 dependent only on the set E and there exist points z1,...,2,—1 € E N B(z,r) such that

|2y — 20| > a, - ™ forall p,v=0,...,k—1, such that p # v,

which, according to proposition 4.7, is sufficient to prove that the set F is (m, x)-perfect. Note that

(m, 3)-perfectness implies (m, 2)-perfectness.

‘We put
1

2-(2e)m (k= 1) cu1

Gy 1=

and construct the points {z;};=1,. .1 as follows. Let j := 1.
Put

) Tﬁ:T.(z—f)ﬁ3

Now find « Fekete extreme points for the intersection E N B(zp, ;) and denote them by C(j), e

These are distinct points because the set E is perfect. For y = 1,...,k denote by L
Lagrange polynomials (see definition 1.7)

l=1,....,k
LFp
Lju(z) = -
’ (4) g(a)
(@7 -a)
LFp

1 _ ftpy . Ot _ d (C(j)) ’ d
’C(J) < |2 I (CL(LJ) _ Cé])) I (Cy) C(J)) dz dz
l=1,..., K l=1,..., K
M 0#1
Thus, by the assumption, we have for each 0 < p <1
1 Cr—1 2
o < (5) Waslsnn o Wielsongo
G
Now assume that for each p =1,...,x we have
Kk—3/2
(10) ’ < S
In such case we put g := % -r; so that we have for all p =1,...,x

ENB(Y,0) C ENB(z,7;)

’(ij)'
G € P._1 the
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and forall l <pu<v<k

2

1 Cr—1 2m . (k—=1)™ - ch1
)m NLjullEnBzo.r) * 1 Ljwll EAB(zow;) = ( o

<
: Tz S 12
‘Cﬁj) —C;(f)‘ (ﬁ'f’j

because by remark 1.8, the norm of these Lagrange polynomials on the set E N B(zp,r;) is equal to 1.

Ty

We see that
( K—2 i-1 "
rm T (n—l)
() _ (j)’ > J - .
’C” Gl = 2m (k= 1)™ - ¢q 2m (kK —1)™ - cuq

Note that for all z > 0 we have (zTH)ac = (1 + %)x < e and in particular, by putting x := k — 2 we see

Kk—2
that (:—:f) > % From this it follows that for all 1 < 4 < v < k we have

,rm

C,E”—Cf{)‘ > o ' — 2q, - 1™,

as long as j < k — 1. Thus at most one point of the set ~{Q(¢j)]»u:17___7,.€ can be included in the interior
of the ball B(zp,a, - ™). After removing from {C;Sj)}u:L...,n that one point, or any arbitrary point if
none belongs to the interior of B(zg, a, - ™), we are left with x — 1 points that meet the requirements
of proposition 4.7.

If assumption (10) is not met, then we conclude that for a certain p € {1,...,x} we have
: Kk—3/2
Cl(ﬂ)sz > 1 “Tj.
In this case we put z; := ,(Lj), after which we increase j by 1 and return to (9).

This way, either for a certain j € {1,...,x — 1} condition (10) will be satisfied and then the problem
will be solved, or we end up with a set of points {z;};=1,.. x—1 C E with the following property:

k—2\""" k-3/2 Kk-3/2 < < p = (522 i
" Kk—1 k—1 k-1 " oAl =T =T K—1

for each j € {1,...,xk — 1}. From this it is easy to see that for all 1 < y < v < k — 1 we have

—2\"t k—3/2 —2\"!
|zu—zy|2zu—zo|—z,,—zo|2r~<ﬁ ) L /—r~<n > =

k—1 k—1 kr—1
N p—1 o N v— _ p—1 B o
. (F 2 (r=3/2 (k=2 - k—2 (E=3/2 k-2 -
k—1 k—1 kr—1 k—1 k—1 k—1
1. 1/2 > q. - ™
e k—1—"°

since m > 1 and ¢, > 1. But similarly we also have

| > k—2\""" p-3/2 1 1)2
Zy — 20| > 71 . re—- >
! 0 k=1 k—1 e k—1
for each p=1,...,k — 1, which finishes the proof. O

COROLLARY 4.16. If a compact set E CC C admits WLMP(m), where m > 1, then it admits PP(m’)
for anym’ >m? ifm > 1 and m’ =1 if m = 1. Consequently by Wiener’s criterion it is L-reqular.

m2-(k—1)
K—m

PROOF. By theorem 4.15, definition 4.5 and theorem 4.6, the set £ admits PP ( ) for any

2
k € N such that x > m. Now it suffices to note that lim,_, % = m? and in the case that m = 1,
this limit is actually achieved for any k.
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COROLLARY 4.17. If a compact set E CC C admits LMP(m, k), where m,k > 1, implying that
cn < c1-nF for all n € N, then in the proof of theorem 4.15 we can put

1
2-(2e)m ¢y - kMRS

Qg 1=

From the proof of proposition 4.7 and theorem 4.6 we obtain the following estimate for the logarithmic
capacity for any k € N such that k > m:

mtk .

C ﬁ+1 m,z-(m—l)
VopoeE V0O<r<1 cap(EﬂB(zo,r))Z( ) -

where C := W depends only on the set E.

REMARK 4.18. L. Bialas-Ciez achieved a better estimate in [Biatas 3, chapter IT §2.2; see also Biatas-
Eggink 1, proposition 2.1] by using a different technique. She proved that for any compact set E CC C
admitting LMP(m, k), where m, k > 1, we have

,192m+k:
Vzpe B YO<r<1 cap(EﬂB(zo,r)) > o m
e
where
oo
log(1/4) 3
9= 2- = =
P Z;H G+2 |~ 10

J=

is some absolute constant. This implies that the set E actually admits PP(m), however this technique
does not give any geometric clues and also it does not work for WLMP.
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CHAPTER V

SOBOLEV PROPERTY IN WHITNEY NORMS (SPW)

DEFINITION 5.1 [cf. Bos-Milman §2]. For a smooth function f € C*(C), a compact set E CC C and
¢ € N we define:

[flee=Y_ IID*flle, |fleo = IflE,
|a|=¢
1fllze:= 1 flle +|flE.e 1flle0 = [IflE
TEfG) = 3D Do) - (2 — 20)°,
jaj<t-1 "

R, f(2) = f(2) = T5 f(2),

where for a = (a1, a2) € Z2 we put:

la] := a1 + ag,
al = aq! - as!,
N ole
DY = ———
Oz - §zaz’

(z—20)" = (2 —20)* - (Z — Z0)™2.

Tfo f is the Taylor polynomial (not necessarily holomorphic) of the function f of degree ¢ — 1 around
the point zg € C and Rﬁo f is its remainder.

Different versions of the following proposition are well known.

PROPOSITION 5.2 TAYLOR FORMULA WITH THE REMAINDER OF LAGRANGE. For any smooth func-
tion f € C(C), £ € N and interval I = [z, z1] C C we have

. 2
7l < min {1, 2oy = ol e

PrROOF. Let’s define two smooth functions for t € R

f(t) = f(z20+t- (21 — 20)),

{—1

olt) =35 (1= 07 F 0,
Then it follows that
=1 L =y o
R RS W IR OR
LY L e ey o - e o
U= (G- 1) )
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1 - 1 1 1 -
|o(1) = ¢(0)] S/ ¥’ (1) dt < \If“)ll[o,ﬂ'/ (1 =t) "t = 1O,
0 o ((=1) 17

Differentiating f and using the Leibniz rule we obtain for each j € N

rw=% (!

le|=3

> ~D°‘f(zo+t~(z1 *ZO))'(Zl - 20)®

1

and '
7l 32 (1) 127 o=l < s, () o=l
«

On the other hand we have

p(1) = f(1) = f(=),
{—1

@(0)—2* F9(0 Z >

|
JOJ J=0 |a|=j

D f(z0) - (21 — 20)* = T%, f(z1).

041 0&2

Therefore we conclude that

Hf ||[01 =

m\,i

|R f(21)| = | f(21) — TL f(21)] = (1) — (0)] <

S maXUScZSZ (Ofl)

2l

o= ol flne < min {1, 5

}-|zl ol flre. O

DEFINITION 5.3 [Eggink, definition 7.5; cf. Siciak 3]. For a compact set £ CC C we define the family
of smooth functions that are 0-flat on E:

AX(E) = { feC>®(C) : the function % is flat on F }
z

A function g € C*(C) is said to be flat in the point zq if D*g(zo) = 0 for all a € Z%. This definition
is slightly different than in [Siciak 3], where A (E) stood for functions defined on E only, which will
be denoted here as A>(E) g :={fig : f € A®(E)}.

The following proposition is also well known to specialists.

ProPOSITION 5.4. If a compact set E CC C is perfect, then it is determining for functions of the
class A>®(E), in other words A% -determining, which means:

fGAOO(E), f|EEO — VOZGZi : (Daf)|E:

PROOF. Let’s fix a function f € A*°(FE), such that f = 0 on E, and a point zp € E. Because the
set E is perfect, we can find a sequence of different points {z;};en C E such that z; — 2z, and next

J*)OO

a subsequence also denoted {z;};en such that arg(z; — z9) — ~y for some angle v € [0,27). Then we
j—oo

have

D’yf(ZO)a

|Zj — Zo| j—o00
where D, f stands for the directional derivative of f, i.e.

flzo+t-€e") — flz)
t

. 0 9
D, f(z0) = lim — cosy+ 5L o)+ siny - 5L ()

and, as usual, z =z + ¥y - 1.
However, since f(z;) — f(z0) = 0 for all j € N, we see that

of

f .
Ccosy - —I(2p) +smy - —
(20) 5

or (ZO) = D’Yf(ZO) = Oa
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while by the definition of A% (E) we have
1 of 1 of

. of
3 873(20) T @(20) = 5(20) =0
Solving this system of linear equations we obtain
of .\ _0f

ax(ZO) = (Ty(ZO) =0

and consequently %(zo) = 0, which means that D*f = 0 on F if |a|] = 1. We can now apply
mathematical induction because % € A>=(E). O

DEFINITION 5.5 [cf. Bos-Milman, definition 2.1]. For a compact set E CC C and ¢ € N we define
Whitney 'norms’ for f € C*>(C):

R, f(2)]
Hflee = Iflle+ sup ———7,
z,20€R ‘Z - Z0|
z#zQ
WA llle == Ifle.
REMARK 5.6. If 2,25 € E, z # 2, then by the Taylor formula with the remainder of Lagrange we
have R ()] , ,
R, f(z . 2 . 2
m < min {1, é'} | fliz0,2),¢ < min {L gl} | fleonv E,¢,

where conv F stands for the convex hull of the set E. This shows that the Whitney norms are well
defined.

On the other hand, if we assume that the set F is perfect and thus A°°-determining and also that
f € A*(E), then we see that

RL f(2) = f(z) — TL f(2) = Z % D*f(z0) - (2 — 20)" + O (|2 — z0|**1) =

|a|=¢
1
=u FO(z0) - (2= 20)" + O (|2 — 20[“™) .
In this case we obtain | , - | . o
R f(2 R f(z 1
L T LA )
sup T 2 dm T = g 0 Go)l,
z#zq
‘Reof('z” 1 1 1
17z VL > . ) _ . (0) _ 1 .
2,20€EE |Z*ZO|£ _zsglépE VI |f (ZO)| 7 Hf ||E 71 |f|E,é

2#z(

REMARK 5.7. The Whitney 'norms’ are in the general case only seminorms. If a compact set E is
C*°-determining (respectively A*°-determining), then any function f € C*°(FE) := C*>(C)g (respectively
[ € A®(E)|g) can be identified with its Whitney field on the set E, i.e. (Daf)ania which in turn
determines the Taylor polynomials Tfﬂ for any zg € E. In such case the Whitney norms are norms on
the space £(E) of Whitney fields or on C*°(E) (respectively A*(E)|g). Note also that many different
versions of the Whitney norms appear in the literature, see e.g. [Whitney], [Tidten 1], [Tidten 2],
[Bos-Milman 1] or [Bos-Milman 3].

DEFINITION 5.8 [cf. Eggink, definition 7.8; cf. Bos-Milman, definition 2.12]. A compact set E CC C
admits the Sobolev Property in Whitney norms SPW(m, k), where m, k > 1, if

VeeN Feg>1 VjeNsuchthat £>m-j Vfe A®(E)
. L_mi
[fleg < e -WfllE -1

and additionally ¢, < ¢; - £F. Without the last assumption we speak of the Weak Sobolev Property in
Whitney norms WSPW (m).

m-j
[
B
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THEOREM 5.9 [cf. Eggink, theorem 7.9; cf. Bos-Milman, theorem A]. For any compact set E CC C

and m,k > 1 we have
LMP(m, k) = SPW(m, k),

WLMP(m) = WSPW(m).
PROOF. Let’s first assume that the set £ admits WLMP (m), i.e.

VneN Je,>1 Vzge E YO<r<1 VpeP, Vi=1,....n

@
Pl < () Iolsnsceon

Without loss of generality we can assume that ¢, > n. By remark 3.5 and proposition 5.4 the set F is
m-perfect and A>°-determining. Fix f € A*(E) and assume that f|z # 0, since otherwise we would
have |f|g,; = 0 for all j € N and the assertion would be fulfilled. For arbitrary zo € F, 0 < r < 1 and
¢ € N we have

IR fllenpeory = sup R f(z)| = sup R f(2)| <
z€ENB(zo,r) z€ENB(zo,r)
2#20
RE 1) RLF()
<rfe sup 2 <t sup e = ([ e — 1ll2) < 7 B
z€ENB(zo0,r) ‘Z - ZO| a,sz |Z - a|
z#z( a#z

and therefore

HTfofHEﬂB(zo,r) = Hf - Rﬁgf”EﬂB(ZO,T) < Hf”EﬂB(zo,r) + HRﬁof”EﬂB(zo,r) < ”fHE + Tl . |||f|||E,@

For all a € Z2 such that |a| < £ —1 we have D*f(z9) = D*(TY, f)(20) because T? f is the Taylor
polynomial of function f of degree ¢ — 1 at the point zy. Since f € A (FE), we have D*f(zy) = 0 for
all a such that as > 1 and consequently Tfo f € Pe—1 is a holomorphic polynomial. We can therefore
apply WLMP to obtain for j =1,...,£—1

o7
)

= |09 Go)| < () 1T flsnson < () (1715 + 7 1 lle.e)

This estimate is also true for j = ¢ because by remark 5.6 we have

o ¢
O o] 3 10l =110 < 0l < (S7) sl < (S57) sl
la]=£
We put
A )1“ .
= (i) <
to see that
8‘7 m/f J . m-j _7’
O o S(ce (1) ) (191 + A A ) = IMANGE - 0

Because the point zy € E was arbitrary, we obtain for all f € Nand j =1,...,/

1,7

-l

07
fles= 3 10sle = | 52| <

lol=3

where ¢ := 2¢,. This finishes the proof of WSPW(m), but obviously if ¢, < ¢; - n* for all n € N then
also ¢y < 2¢; - #F = ¢ - £*, as required in SPW(m, k). O
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CHAPTER VI
SOBOLEV PROPERTY IN QUOTIENT NORMS (SPQ)
DEFINITION 6.1 [Bialas-Eggink 2, definition 1.4; Eggink, definition 8.1; cf. Bos-Milman, definition

2.2]. For a compact set E CC C and ¢ € N we define quotient norms for f € A®(E) (or as the case
may be f € A®(E)p):

IfIE,Z = inf{”.ﬂ|convE,£ : .]?6 AOO(E)v .]?|E = f\E}a
11z = flle.

DEFINITION 6.2 [cf. Bialas-Eggink 2, definition 1.5; cf. Eggink, definition 8.2; cf. Bos-Milman,
definition 2.15]. A compact set £ CC C admits the Sobolev Property in Quotient norms SPQ(m, k),
where m, k > 1, if

VeeN Fe,>1 VjeNsuchthat £>m-j Vfe A®(E)
1—m2

. y mej
fleg <c-1flg © 115

and additionally ¢, < ¢; - £, Without the last assumption we speak of the Weak Sobolev Property in
Quotient norms WSPQ(m).

THEOREM 6.3 [cf. Eggink, theorem 8.3; cf. Bos-Milman, theorem A]. For any compact set E CC C

and m,k > 1 we have
SPW(m, k) = SPQ(m, k),

WSPW(m) = WSPQ(m).
PROOF. Let’s first assume that the set E admits WSPW(m), i.e.

VeeN Fe,>1 VjeNsuchthat £>m-j Vfe A®(E)

_m-
1 [

Iflzs <c - lIfllle = - NAIE, -
Fix ¢, 7 and f as above, and let’s take an arbitrary f € A>*(FE) such that J7|E = fig- By applying

WSPW to (f — f) we see that the set E is .A>-determining and for all o € 7% we have D*f = D®f on
E. Therefore by the Taylor formula with the remainder of Lagrange we obtain as in remark 5.6

RS f(2)] |+ R F(2) = =
Nfllee=11fle+ sup ——F =flle + sup ——F <|fllconvE + |fleony £t = || fllconv 2,e-
5208 |z — 20 #20€8 |z — 20
z#zQ z#2z(

Taking the infimum over such fwe obtain

1Allze < int {| Fleonv e = F € A®(E), fi = fin} =1 fles

and putting this into the inequality WSPW we conclude that

1—m7

. -J m-j
fleg <c-1flg © 1l

This finishes the proof of WSPQ(m), respectively SPQ(m, k) if ¢, < ¢;-¢¥ forall € N. O
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DEFINITION 6.4 [Bialas-Eggink 2, definition 1.7]. For a compact set E CC C we define the family of
smooth functions that are holomorphic in some open neighbourhood of the set E:
of

H>®(E) := { fec>() : 55 = 0 in some open neighbourhood of E} .

DEFINITION 6.5 [Bialas-Eggink 2, definition 1.7]. For a compact set E CC C and ¢ € N we define
holomorphic quotient norms for f € H®(E):

(=t {|Fleonpe s F€HZ(E), fir = fin},
(e = fle

DEFINITION 6.6 [cf. Bialas-Eggink 2, definition 1.7]. A compact set E CC C admits the Sobolev
Property in Quotient norms for Holomorphic functions SPQH(m, s, k) where m,k > 1 and s > 0, if

VeeN deg>1 VieNsuchthat £>m-j5 VO<d<1 VfeHP(E;s)
co\J 1_mi mej
e < (50) AR T A

and additionally ¢, < ¢; - £¥. Without the last assumption we speak of the Weak Sobolev Property in
Quotient norms for Holomorphic functions WSPQH(m, s).

THEOREM 6.7 [cf. Bialas-Eggink 2, theorem 1.8¢c]. For any compact set E CC C, m,k > 1 and any
s > 0 we have
SPQ(m, k) = SPQH(m,s, k),

WSPQ(m) = WSPQH(m, s).

PROOF. The proof is immediate because H*(Es) C H*(E) C A*(E) and conv E C conv Ej.
Consequently for all € N, 0 < § <1 and f € H™(E;s) we have | flee < {fVee < {(fpse. O

While the implication SPQH = LMP was the main subject of [Bialas-Eggink 2], here we will
produce a more convenient result by introducing yet another Sobolev property. First however, following
the example of [Bos-Milman|, we construct special cutoff functions, which will allow us to estimate the
holomorphic quotient norms.

PROPOSITION 6.8 ON CUTOFF FUNCTIONS [cf. Bos-Milman, lemma 4.12; cf. Tougeron, lemma 3.3;
cf. Malgrange, lemma 4.2]. For any compact set K CC C and radius 0 < € < 1 there exists a cutoff
function u € C*°(C) such that

(a) 0<u(z)<1 forall z € C,
() u(z)=1 if dist(z, K) < §
(¢) u(z)= if dist(z, K) > e,
C
d) ||D%u|lc < 6";‘ for all a = (a1, a5) € Z2

where Cy :=d - t* fort € N, Cy :=d and d > 1 is some absolute constant.
In order to prove this proposition we need two auxiliary lemmas.

LEMMA 6.9. Let x € C*(R) and a € R. Put v(z) := x (% 4+ a) for x € R so that v € C*(R). Then
for p € Z4 we have

2p
U(QM) (:L-) = Z QQM’E . :L-QZ_QM . X(é) (x2 + a) ,

l=p
(1) .

w1 (1) = Z Qi p2-2m=1 (0 (x2 I a) .
l=p+1
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where for all p € N

a2p,2p = 20/2#71,2;1717
Aope = Gop—1,0- (20 =2+ 1) 4+ 2a0,—1,0-1 for all £ € N such that p < £ < 2p,

AQ2pp = A2p—1,p

and for all p € Z4

A2p+1,2u+1 = 202,245

A241,¢ = agur - (20— 2p) + 2a2;,0—1 for all £ € N such that p < ¢ < 2u+ 1.
In particular, for v € Zy and ¢ = int "TH, ...,y we have 1 < a,, < (v+1)! and consequently
(2) v (@)= Y a2 X9 (2% +4a),
{=int "21

@) < @+ DEmax (L} Y O (@ +a).
Z:itlt”TJrl

Here and further int ”T‘H denotes the largest integer smaller than or equal to %1

PROOF. Obviously for 4 = 0 we see that equalities (1) are true with ago = 1 and a1,; = 2 since
v'(z) =2z (x2 + a). Using mathematical induction we can prove equalities (1) for any p € N because

V(@) (7) = (U(z(ﬂ,l)ﬂ))/ () =

2pu—1
=3 agure- ((25 — 2 1) 222 3O (22 4 g) 4 2229 (D (52 4 a)) -
l=p

2pu—1 2pu—1
— Z a2M71,£ A (2£ _ 2M + 1) . x2€—2u A X(@) (mQ + a) + Z 20/2“71’4 . x2€—2u+2 . X(é-‘rl) (x2 + a) —
l=p l=p
2pu—1 2u
= Z a2,u,71,€ . (2£ — 2/}1 —+ 1) . :L-QZ_QM . X(é) (x2 + a) + Z 20“2,“71;‘671 . "E2£_2M . X(Z) (:L-Q _|_ a) =
l=p l=p+1

2p
= Z G‘Qy,,f . x2€_2ﬂ . X(é) (:E2 + a)
l=p

and

U(Q“H)(z) — (U(2u))l (z) =

2p
= Zagmg - ((26 —2u) - 2?72 O (22 4 a) + 2?7 2 D (22 4 a)) =

l=p
2 21
_ Z@m@ (20— 2p) - p26-2p—1 _X(e) (xQ + a) + Z 21z - p20-2p+1 'X(“—l) ($2 + a) _
l=p l=p
21 2pu+1
= Z Aop,e - (20— 2p) gl 'X(Z) (a?Q + a) + Z 2a0,,0—1 gl .X(z) (x2 + a) =
l=p+1 l=p+1
2pu+1
_ Z U2yt p26-2p—1 _X(E) (m2 + a) )
l=p+1

It is now obvious that a,, > 1 for all v € Z, and ¢ = int “HL, v.
Finally put b, := maxga,, for all v € N. Because for all p € N and eligible £ we have ag, ¢ <
(2u+1)-boy—1 and agyyi1,e < (21 +2) - by, we see that by, < (2 +1) -bay—1 and b1 < (2u+2) - by,

so that altogether b, < (v +1). O

“ey
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COROLLARY 6.10. Let x € C*(R) and b € R. Put Y(£) := x ([|£]|* = b) for £ = (&1,&) € R? so that

T € C®(R?). Here ||€]| := /&2 + &2 stands for the standard Euclidean norm. Then for any & € R? and
o = (o1, a2) € Z3 such that |a| > 0, we have

2l

oy L&) < (ar +1)!- (a2+1)!~max{1,||§\|la\} Jal- Y ‘x“) (€2 _b)‘_

| +1
t 2

olel
oET - 9ES

£=in

PrROOF. We apply equality (2) of lemma 6.9 twice; first to the function T(-, &) with constant &5,
ie. v(z) := x (2% 4+ a) where a := &} — b, to obtain

a1

aa
ge T &) = Yo e G X (G 8 -0),
aqg+1

£y =int

and next to the constituents of the function Y (&, -) with constant &, i.e. v(z) = x) (22 + a)

agal
where a := £ — b, to see that
el o2 30‘1
o aras L&) = 50a7 T) (61,&) =
087" - 085 085 \ ot
(7] a2
= Z aal 0y ZE1 o Z aag 123 5262 a2 X(Z1+e2) (52 + 52 - b)
£1=int QITH Lo=int OLQT-H

We conclude that

0 rel<
’35?1-86?2 (5)‘

28 a2

< Z Z oy 0y Gorg s - |£1‘2217a1 . ‘€2|2£27a2 . ’X(Z1+€2) (”€H2 _ b)‘ <

1 . 1
t a12+ lo=int %

elzin
[e5] (e %)
< YD (D (ag DL Pt B ()2 )| <

£1=int 2L go—int 2241

a1 a2

< Y > (@Dt Dtmax {1, el B (g2 - b)]| <

£r=int 2L go—ing 2241

]
S Do+ D max {1 S0 W@ (e -0 <
£1=int al+1 f=int la‘;l

||

< (o + 1)t (az + D max {1 el Jal - 30 WO (Il - )|

it lel+l
£=int “—5"—

because int [2-FL <int @l 4 ipg 22l g
2 2 P}

LEMMA 6.11. Let x(t) := e/t fort < 0. Then x\9(t) = (=1)¢-t72¢-Qq(t)-e'/* for any £ € N, where
Q¢ € Pr—1. Moreover, Qui1(t) = Qu(t)-(1+2¢-t)—t*-Q)(t) and therefore, if we put Q,(t) = Zf;é b ;-t7,
then

ber1,0=beo =1,
boy1,;="0br;+(20—j+1) bej for all j € N such that j < £,

beyio=+1) bgs_1.
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In particular for ¢ € N and j = 0,...,0 — 1 we have 1 < by; < 2°- (¢ — 1)! and therefore |Q,(t)] <
20 01 - max{1, [t|*'} and also | X9 (t)] < (20)%¢ - 72 - |Qu(t)| for all t < 0.

ProoF. The first part follows by induction. Indeed it is obvious that x/(t) = —t~2 - e!/*, which
implies that ;1 =1 and by = 1. For subsequent derivatives we have

D) = (xO) (1) = (~1)° - (2201720 Q) + 172 Q1) + 172 Qult) - (—1) 1 72) e =
= (=)D (204 Qu(t) — 2+ Q1) + Qult)) - €t = (~1) T 42D Ly (1) - !

and therefore

Qes1(t) = Qu(t) - (L+20-1) —t*- Q(t) =

-1 -1
(1+2¢- t Z bg’j- t2 Z bg’J B = 1 =
7=0 7=0
-1 -1 1
= (bey )+ Y (20-bey - t7T) => (bey gt =
j=0 j=0 j=0
-1 ¢ ¢
= " (beg )+ D (20 bpya 7)) =D (b (j—1) ) =
7=0 j=1 j=1
fb/0+2(bﬁj+2f bej—1—bej—1-(j—1)) tJ)+(QZ'bz,e—lfbe,Z—l'(ffl))'tZ*
jEN
j<e

¢
§ lJrl g
7=0

It is now obvious that by ; > 1 forall /€ Nand j =0,...,¢— 1.

We put by := max; by ; for all £ € N. Then we have by =b1g =1, bao =1, ba1 = 2b1 90 = 2 and thus
by = 2. If £ > 2 then we have bpiq; < 2¢- b, for all j € N such that 2 < j < ¢, while by110 = 1 and
bey11 = beg + 20 b = bgq + 2¢. Altogether by induction we obtain by < 2¢- (£ — 1)!.

Finally, it suffices to note that a function a(t) := t=2¢ - e!/* t < 0, attains its maximum at t, = —%.

PROOF OF PROPOSITION 6.8 ON CUTOFF FUNCTIONS. We naturally identify the complex plane C
with R? and consider the compact set K := {(&1,&) € R? : & + & i€ K} CC R2 Put
{ el/t for t < 0,

t) =
X(0:= 1 for ¢ > 0,

so that x € C°(R) and let Y(&) := co - x([|€]|* — ¢3) for € = (£1,&2) € R? so that Y € C(R?). Here
c1 := 3/8 and ¢y > 0 is chosen in such a way that [, T(£)d€ = 1, where as usual d§ = d&; - dé;. Put

also Te(¢) =% 7T (%) for £ = (&1, &) € R? and note that supp Y = B(0,¢; - €) CC R2.
We define the cutoff function that we are looking for as a convolution of Y. with the characteristic

function of the set I?e /2
u(g) == / - YT.(&—1)dr
dist(7,K)<e/2

Y.(6—7)dr :/R2 Y.(r)dr :/ Y(r)d

and note that

ogmog/

R2

T =1
R2
We also see that suppu = §€R2:dist§,l~( <ci-e+€/2="Tey and u(é zlifdistf,f( < £
8 8

because in this case

ﬂ(§)=/ T(§—7)dr > / T (& —T)dr = / YT.(r)dr = 1.
dist(,K)<e/2 B(€,c1-€) B(0,c1-¢)
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Furthermore we have for all £ € R? and a = (a1, a2) € Z2 such that |a| > 0

IN

olel
e -

/ ala\
dist(1,K)<e/2
ala\

o - 985
97" - 0837

glel
o A as —T1)dT
/dist(‘r,f()ge/2 o8 - 063 T&=7)

olel
dr < /R2 Wre(ﬂ
oled
oy - 083°
e olel
Boeny 4o |06 08

By consecutively applying corollary 6.10, lemma 6.11 and Stirling’s formula, according to which ¢! <
(E)K V27l - e/ (120 we obtain

€

YT.(—7) dr =

Szar gz Le(T)

alal

B(O,c1~e)

dr < W'(Cl'E)Q"

B(0,c1-€)

016

62+|0“ HBE

B(O,Cl) .

||
Sco-(a1+1)!-(a2+1)!-max{1,c|1a‘}-|a|- E HX(Z)H 2. <
—e2,

g lal+t
£=int —5—

3|a\

oo

B(O,Cl)

||

<ecp (g + D (az+ 1) |af - Z (20)%¢ .72 .20 1 <

_ing Lo+l
£=int “—5—

S NN
<co 205208 o] ) ( g ).wﬁ%g.eu(me@
f:int‘“l% e

lof
83
§4co-\/27r-el/12-|a|°‘1-\a|o‘2~|a\- E ( ) Vi<
e3
(=1

||

| 8- |af e 8- |af?
<1leg - |a||a| o - Z () V]l < 11cg - |a|la\ . |a|5/2 . <63> < 1lecg - |a|4~\a|

e3
{=1

because |a|*/? < (%)\04 and 2 - & < 1. Hence we conclude that

[

3\04 d-|of*lel

E‘O‘I

yxe
< L. 11c¢g - |()4|4"O‘| <
6|O“

2 a
e alel
R2

elal || agor - gz T

e

where d := max{1, 5¢p} is some absolute constant.
Finally we revert to K CC C for which we define the cutoff function v € C*°(C) as follows:

~(z+Z z—Z
u(z) :=u ,— .
< 2 24 >

Properties (a), (b) and (c¢) are obvious, while property (d) can easily be proved by mathematical induc-
tion. Indeed if we write

061)

ol 2+2Z z2—Z
Du(z)= > ¢ 5 o ﬂ( L2 )
pezn e - Ol 2 21

[B]=le|

for some ¢, g € C, with o, 8 € Zi, then we have
1 opI+1 1 9IpI+ z+zZ z—Z
D(Oé1+1,042)u 2) = E Cog | = ——F—5u+—- u ( ’ ; ) ’
( ) B 2 8£fl+1 852'62 2 85'161 .a£g2+1 2 2

( ) )u(z) Cq B . ( [ —Y . = < ) .
g o } 5 2 ) é 1 ﬁ +1 9 B
| ‘7| | E ’ § 27’ 6 IH] . 8532 2 2Z
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Therefore we see that

> letattansl € D Icasls

1Bl=lal+1 [Bl=le|
Z |c(a1,042+1),,3| < Z |CO¢7B|7
1Bl=lal+1 [Bl=le|

which implies that for all a € Zi

Y lcapsl <leoo00] =1
18/=lal

o8l

d . |a‘4‘a|
1 B2 u
08" - 08,

5|0“

ID%u(z)llc < Y Icassl-

1Bl=la|

RQ
PROPOSITION 6.12. For any compact set E CC C,0< 6 <1, f € H®(Es) and £ € N we have

(2d e)

<<f>>E5/17,f < HfHEa

where d > 1 is the absolute constant from proposition 6.8 on cutoff functions.

PROOF. Let u € C*°(C) be the cutoff function constructed in proposition 6.8 for the compact set
K := F and radius € := §/2. We put f:: u - f and see that fe H>(Es/17) because fz fon Es/16,
which contains an open neighbourhood of the set Es/17. In C\ Ej5/, we have v = 0 and hence Do‘fz 0
for all o € Zi. Consequently by the definition of the holomorphic quotient norms we have

<<f>>E5/177€ < vaHCOUVE(S/l%e < HfH(C,@ = ||f||E5/27€'

By the Leibniz rule we obtain for every z € Es/, and o € Z2 such that |o| = ¢

Dj) = 3 (5) Do) D e(e) =

BEZ
_ Z ( > u(z) - D*~ ﬁf( ) = Z <Oél> .D(ﬁ1,a2)u(z) . f(al—ﬂl)(z)
gﬂ<a B1<an ﬁl

because f is holomorphic in Es. Note that the expression § < a means that §; < a1 and G2 < ag,

while ( )= (gll) ( 52) The properties of the cutoff function and Cauchy’s integral formula lead us to

ry C &3] a1 —

B1<an B1<an
Ci+a (o ! Csita
1 2 f — . 1 2 f S
ﬁ;a <,6’1) (6/2) 51+a2 (5/2)061 ,31 A flles = 621 Bl (5/2)ll I Nes
o)l Cly e-0-Cy 2¢ - 0' - Cy 2e - d £
< e A fles = Nz € ——7— - Ifllz; = ——7— - lIflles,
2 Gy Ml =Ty Ml < = : :

because 2¢ - ¢! < 2¢¢. Finally we see that

(<f>>E5/17>4 < ||JT;HE6/27Z = HfHE&/Q + Z HDQJ?HE&/Q <
la|=¢
2¢ - d 05t 2d - ¢
<042 20, < ! 171125,

because (£ 4 2) - 2e < 2°¢. [
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CHAPTER VII

SOBOLEV PROPERTY FOR HOLOMORPHIC FUNCTIONS (SPH)

DEFINITION 7.1. A compact set £ CC C admits the Sobolev Property for Holomorphic functions
SPH(m, s, k) where m, s, k > 1, if

Jeo>0 WeN Jeg>1 weNsuchthate>m.j VO<§<1 VfeH(Es)

+
flea < (S A1

and additionally ¢, < ¢; - ¢, Without the last assumption we speak of the Weak Sobolev Property for
Holomorphic functions WSPH(m, s). We will write that the set F admits SPH, respectively WSPH, if
it admits SPH(m, s, k), respectively WSPH(m, s), for some m, s,k > 1.

THEOREM 7.2. For any compact set E CC C, m,k > 1 and s > 0 we have

SPQH(m, s, k) = SPH(m7 m+ s, k+ 5m),
WSPQH(m,s) = WSPH(m,m + s).

PROOF. Let’s first assume that the set E admits WSPQH(m, s), i.e.
VeeN de,>1 VjeNsuchthatfzm-j YO<6 <1 VfeH(Es)

Ao < (2) 405 Ak

Fix ¢ €N, je Nsuchthat £ >m-5,0 < d < 1and f € H*®(E5). We combine WSPQH with proposition
6.12 to obtain

_m mj s. —mi AR mj
e < (s ) -4 anit o= (T L %-ana; -

J
175 - o - (2d - )™ pma m z
:< smts Aflle - lAlE = 5m+5 IIfHE HfHEW

where ¢ 1= 17 - ¢; - (2d - £)°™ and d > 1 depends solely on the choice of the set E. This proves that E
admits WSPH(m,m + s) but also if ¢y < ¢1 - €% then ¢ < 175 - ¢y - 05 - (2d - €)°™ =& - £++5m . O

Now in order to prove the implication SPH = LMP, respectively WSPH = WLMP, we need to
do some preparations.

LEMMA 7.3 [Bialas-Eggink 2, lemma 2.1]. Let p be a polynomial of degree n and 2o, . . ., z, be arbitrary
points of C such that z,, # z, as p # v. Then for each j =1,...,n we have

) LS PR R
= pY(20) : ;
j = — 20 dzi—1 1 in BT

v Je=z0

In particular,
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PROOF. Put ¢(z) := p(z)=p(0) Tt ig evident that q is a polynomial of degree n — 1 and

zZ—2Zz0

Therefore 1
q(J_1)<ZO):3p(])(ZO) forj:l,...,n

and by the Lagrange interpolation formula we have for arbitrary z € C

W)=Y la)- [ ——=] ©
p=1 peo

v=1,....,n
v#p

PROPOSITION 7.4 [Bialas-Eggink 2, proposition 2.2]. Let E CC C, zp € E, r > 0 and n € N be fized.
Put

T =T(z9,7):={t €[0,7] : 3z € E such that |z — zo| = t}.

If there exists a constant ¢, > 0 such that for every polynomial q € P,,(R) we have

(1) ' (0)] < en - lallr,

then for every polynomial p € P,,(C) it follows that

(2) P'(20)] < 21+ cn - Dl BB 0.

Proor. Consider n + 1 Fekete extremal points tg,...,t, of the set T' constructed as follows. Put

Vixg,...,xn) = H (xy — zp).

0<u<v<n
We choose tg,...,t, €T such that
(3) [V (to,...,tn)| = max{|V(zo,...,2n)| : Zoy...,xn € T}.
We can assume that tg is the smallest number of tg,...,%,. Observe that t5g = 0. Indeed, t, —ty < t,
for all v =1,...,n and from condition (3) we deduce that ¢y = 0.

By inequality (1), the set T' contains at least n + 1 points, and consequently V (¢o,...,t,) # 0. For
©w=0,1,...,n consider the Lagrange polynomials

Vo, sty 1t tusty - stn) t—t,
(4) Ly(t) = L = .
V(to, ... tn) V:g[“m w—ty
v

We have ||L,||7 =1, as is easy to check. By inequality (1), for p =1,...,n we have

/
H |tu tu| | ,u(o)| = Cn H #HT Cn-

v=0,...,n
v#EpR

Now choose 21, ..., 2, € ENB(zp,r) such that |z, — 29| = ¢, for v =1,...,n and fix p € P,,. Lemma
7.3 implies that
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[T [20—2]

: | p(z1) — p(20) 20— 2 G
PESIIE Dl R CRRICO N, § TR e T N [ Au—
p=1 Zu T 20 v T A =1 [T lzu—2]

vt v=0,...,n

v#p

It is easily seen that |z, — 2z,| > [t, —t,| for each p and v. By the above, we obtain

n v=1,...,n
v
|pl(20)‘ < 2 HpHEﬂB(zo,r) : E H ‘t ¢ | =
p=1 B
v=0,...,n
v#Ep

=2 ||pllEnB(z0,r) - Z 1L, (0)] <2n-cp - [Ipl|EnB(z0.r) O
p=1

REMARK 7.5 [Bialas-Eggink 2, remark 2.4]. Note that inequality (2) does not imply inequality (1).
It is sufficient to consider the set F := {0} U{z € C : |z| = r} and 2y = 0. By Cauchy’s integral
formula, inequality (2) is satisfied for all polynomials p € P,,, but the set T'= {0, r} does not admit any
Markov inequality.

Note that in the proof of proposition 7.4 we did not need inequality (1) for all polynomials but only
for those of Lagrange.

COROLLARY 7.6 [Bialas-Eggink 2, corollary 2.5]. In proposition 7.4, it is sufficient to assume that
|L;L(0)| < cn - |Lullrezory forp=1,...,n.

COROLLARY 7.7. If a compact set E CC C is connected, then it admits LM P(1,3).

ProOOF. Without loss of generality we can assume that diam E > 2. Now note that for each 2y € F
and 0 < r <1 the set T = T(zp,r) as defined in proposition 7.4 is connected and it contains the points
0 and r. Therefore T = [0, r] and it admits the classic Markov inequality stated in theorem 1.1, i.e.

2n?
l'(0)] < = gl

for every polynomial ¢ € P, (R). Consequently by proposition 7.4 we have
o)l < il lsnaean
for every polynomial p € P,(C). O
The next lemma was inspired by [Zeriahi, theorem 2.1].
LEMMA 7.8 [Bialas-Eggink 2, lemma 2.7]. Ifp € P, andr > 0, then there exists an interval I C [0, 7]
of length at least -~ such that

4n?

Ipllor) <2-p(z)| for allx € 1.

PROOF. Let zg be a point of [0, r] such that |p(zo)| = ||p||jo,,. Put I := [z0 — 152,20 + 1=z ] N [0,7]
and consider an arbitrary point € I. The mean value theorem leads to

r
p(0) = @) < 1P/l w0 = 2] < 5 [Pl

The interval [0, 7] admits the classic Markov inequality, hence

2n? 2n?
11910, < - 1pllf0,, = - Ip(z0)|-
From the above it follows that
r  2n? 1
Ip(0)] — [p(@)] < [p(w0) — p(2)] € 13 - T - Ip(w)| = 5 - o(o)],

and finally we have
[Iplljo.r1 = Ip(zo)| < 2 [p()]. O
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THEOREM 7.9 [cf. Bialas-Eggink 2, theorem 2.8; cf. Bos-Milman, theorem A]. For any compact set
EccC and m,s, k> 1 we have
SPH(m, s,k) = LMP(m/, k'),
WSPH(m,s) = WLMP(m').

for any m’' > s and k' > k + 3s.
PROOF. Let’s first assume that the set F admits WSPH(m, s), i.e.

Jep>0 WeN 3Je;>1 VjeNsuchthat £>m-j YO<d<1 VfeHZ(Es)
cp\Jtco 1—md m-j
fles < (5) AT - I1lE, -

Without loss of generality we can assume that the sequence {c¢}sen is increasing. Fix an arbitrary
integer a > m + 1 and put m, = % > 1and k, := % > 3. We will use proposition
3.3 to prove LMP(my, ko +my) respectlvely WLMP (m,,), Wthh for a — oo leads to the assertion of the
theorem, because lim, o My = s and limg_, 00 (ke + ma) = k + 3s.

Hence we need to prove the assumption of proposition 3.3, i.e.

(5) VneN Fe,n>1 VzpeE VO<r<1 VpeP, : p(z )|§ ||pHEmB(z()r)

and appropriately control the coeflicients ¢, ,, if required. For n € N we put

Com 1= max{(4 .35 . ¢ ) ot (4 gy Tiato) 3}
an +— 2a2-n n ) ,8’1’L .

Note that if ¢; < ¢ - €% then

a+tcq

pr— s-(a+cq)
Cq,n < Max { (4 3% ¢ - (202 n)k) - (4n?) s 78713} =

+
S0 siaten)

— <4 . 35 ey (2a2)k> a=m 4*7(1_7“ . nka’

and therefore these coeflicients can be controlled as required.

We proceed to prove inequality (5). Fix arbitrarily n € N, zg € F and 0 < r < 1. Define T = T'(z, r)
as in proposition 7.4. Choose tg, ..., t, € T satisfying condition (3). As in the proof of proposition 7.4,
we can assume that to = 0. For y =1,...,n denote by L, the Lagrange polynomial given by definition
(4). Let I, be an interval of length at least 7= constructed for the polynomial L, as in lemma 7.8.

If for every p = 1,...,n there exists z, € E such that |z, — 29| € I,,, then we use proposition 7.4.
Specifically, in this case for = 1,...,n, I, meets T'(z9,7), say at t,. By the classic Markov inequality
for the interval [0,7] and applying lemma 7.8 we obtain for p=1,...,n

2 2
o)< 2 i L)) € 2 Ll

Hence by proposition 7.4 and corollary 7.6 we have

8n? C,
Ip'(20)] < - 1Pl EnB(20,r) < T;’: NellenBzo.m

for all polynomials p € P,, as required in the assumption of proposition 3.3.

We now turn to the case where I, N T(zp,r) = 0 for some p € {1,...,n}, which implies that there
is an empty annulus around zg of a certain minimum size. We shall have established the theorem if we
prove that in this case we have for all p € P,

1

wieo ym a—m
(6) |p/(20)| < (2ba,n) o <lS~(a+co)> ’ ||p||EﬂB(Zo,T)’
I




42 MARKOV’S INEQUALITY IN THE COMPLEX PLANE

where

ban :=2-3% Cag2n

and [, is the length of I,,. Indeed, by lemma 7.8, [, > ;7> and applying this to inequality (6) we obtain

P 5
> NPl EnB(z0,m) < Ta’n Nl EnBz0,r)

P (20)] < (2ban) = -

Ts-(aJrco)fm Mg

ateq ((4n2)s-(a+00)
as required.

It remains to show inequality (6) for all p € P,. For this purpose, we write [pg, p1] for the interval
1,,. Of course, 0 < pg < p1 <7 and p1 — po = I.

The rest of the proof is adapted from [Bos-Milman, theorem A].

Let € € C*°(R) be any cutoff function with the following properties:

(a) 0<e(x)<1 for all z € R,

b)) e(x)=1 for z <

9

WM W =

(¢) e(x)=0 for x >

7

and put h(z) :=¢ (W) so that h € C*>(C).

Now fix arbitrarily p € P, and let ¢(z) i= (p(z) — p(20))", 4 € Pawn, and £(2) i= h(z) - (2). Choose
any ¢ € N such that a® - n < ¢ < 2a? - n. Since T'(z0,7) N [po, po + 1] = 0, we have f € H*>(Es), where

Ly _ r
We see that
(7) 1fle = I1fl EnB o) < 12l EABz0.01)5
(8) 1fllEs = 1 flEsnBo.01) < 1 FIBGo.p1) < laB(20,01)5

and by the WSPH(m, s) we have for arbitrary j € N such that j <a-n < g <

£
m

>f
023

©) 49 (z0)] = —

Cy j+00 1,""7'1 m-j
e < (5) AT AL -

(z0)| < H@jf

=1f

From inequalities (7), (8), (9) and the choice of £ and 4 it follows that

) 3% . ¢ Jj+co 1_m me
o)l = ( ; )l el ) <
%ban j+co |_mi mg
(10) < (l) Nall gy -l o

Our next objective is to estimate
1
\ = ( 9l B(z0.r) )M >1
gl EnB(z0,m) B
By inequality (10), we have for any j =1,...,a-n

() %ba,n Jeo anm-j %ba,n Jreo m:j
(11) 1" (20)| < | =5~ AT ldlenBzor) S| ‘A gl BnBzo.r)

L L
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and for j = 0 this is trivially true too. From this, applying Taylor’s formula and the fact that [, <r <1,
we get

an s a-n J+co 7
r 1 m-j
||Q||B(zo,r) < Z |q(]) (20)] < Z < ) <18) BVERO AT ||Q|\EmB(z07r) <
= 7=0 wlotw
an+c0 r m-n
<2 O e [
I

It follows that

A — M <2. (ba’n)a~n+c0 . (r)a'n ) 1 e

HQHEOB(ZO"[') lz ZZ-CQ 9

a 1
a+tco/n r a—m 1 (a—m)n
A< 2 (bgp) = (lS) . (lsco> :
I I

By combining this estimate with inequality (11) we can assert that for j = 0,

and consequently

L,a-n

() oo\ ms mi e/ (A 1\ @
a7 (z0) < | =5 2 (baw) = Nallens(zo,r <
u n

m-j

ba, " j+C0 m-(iteq) r a—m 1 #
< ( T ) “(ban) e (ZS> : (lsco> Nl BnBzom) <
I /L

12

a-(j+cq) r’m = 1 Hasm
< (ba,n) amme. <ls'a> . (lsc0> . ||q||EﬂB(zo,r) =
w I

J a

a-(j+eg) T'm a—m 1 a—m
) () () el
o 123

because m < a and j < a - n. Specifically, for j = a we have

o o a-(a+cg) P\ = m 1 \&m
W Gol* =l < o) (22) 7T () lallenateon <
% H

a(ateg) r R a
(ba’n) R (l (a+co)> 2% (Hp”EﬂB(ZOJ‘)) )
“w

IN

because

v=1

q(z) = (P(Z) —P(ZO))a = <Z :l (V)(Zo) (2 — Zo)”) = (P/(Zo) (2 - Zo))a +0 (|Z - Zo|a+1) :

From this it finally follows that

1
te m a—m
P (20)| < (bayn) == - (W) -2 [|pll BB (20,7)»

which implies inequality (6). O

We have now completed the proof of the first part of our main result, which is the equivalence of
LMP and SPH, albeit with some deterioration of the constants.

THEOREM 7.10 [cf. Bos-Milman, theorem A]

. For any compact set E CC C and m,k > 1 we have
the following string of implications:

LMP(m,k) = SPW(m,k) = SPQ(m,k) =
= SPQH(m,0,k) = SPH(m,m,k+ 5m) = LMP(m’, k')
for any m' >m and k' > k + 8m.
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COROLLARY 7.11 [cf. Bos-Milman, theorem A]. If in theorem 7.9 we assume that s =1 and co =0

then, regardless of the choice of the integer a > m, we have m, = 1 and therefore in the assertion we
can take m' = 1. Consequently we have

LMP(1,k) = SPW(1,k) = SPQ(L,k) —
— SPQH(1,0,k) = SPH(1,1,k+5) with co =0 = LMP(1,k)
for any k' >k + 8.

Analogous statements are true for the weak versions of these properties.
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CHAPTER VIII

JACKSON PROPERTY (JP)

DEFINITION 8.1 [Siciak 3; cf. Plesniak 1; cf. Zerner|. For a compact set F CC C we define the space
of functions on F, which can be rapidly approximated by holomorphic polynomials:

s(B):={feC(E) : Y£>0 lim n’-distg(f,P,) =0}

n—oo

with the following Jackson norms:

Ifle := | fllz + supn® - distg(f, P,) for £ >0,
neN

[fl-1 = [Iflle-

DEFINITION 8.2. A compact set F CC C admits the Jackson Property JP(s,v), where s,v > 1, if
H>(E)|g C s(E) and

C[ z-'r(!o
Jeo>0 V>1 Jeg>1 YO<6<1 VfeH®(Es) - |f|E|4§(5—) f1lEs

S

and additionally ¢, < ¢; - £¥. Without the last assumption we speak of the Weak Jackson Property
WIP(s). We will write that the set E admits JP, respectively WJP, if it admits JP(s,v), respectively
WIP(s), for some s,v > 1.

DEFINITION 8.3. For a fixed compact set E CC C and ( ¢ E put fe(z) = C—iz in some open

neighbourhood of the set E and extend it to a function of class C*°(C) so that fr € H*(E).

REMARK 8.4. Note that if H>°(E)|p C s(E) then the set £/ must be polynomially convex. Indeed if

we assume the contrary, then there exists a point ¢ € E \ E. Now construct a sequence of polynomials of
best approximation for the function f. € H*°(FE) as in definition 8.3, i.e. p,, € Py, such that || fe—pn|g =
distg(f¢, Pn), and subsequently let ¢, (2) :=1— (¢ — 2) - pn(2) so that ¢, € Ppi1. We then see that for
all z € E and n € N we have

lgn(2)] = [ = 2| - | fe(2) = pn(2)| < diam E - || fe — pul|p = diam E - distg(fc, Pn)

and consequently, by the definition of the polynomial hull,

1= gn(O] < llgnllp = lignllz < diam E - distg(f¢, Pn)-

This demonstrates that on the set E it is not possible to approximate the function f; using holomorphic
polynomials, not to speak of rapid approximation.
We are now going to look for ways to identify sets admitting the Jackson Property.

THEOREM 8.5 JACKSON’S THEOREM [cf. Bos-Milman, lemma 4.17; cf. Plesniak 4; cf. Cheney;
cf. Timan; cf. Jackson|. For each interval I = [a,b] C R, a < b, there exists a constant C' :=

max {1, W} such that

n

N
VfeC®(C) WeN VneN : dist;(f,Pn)§<C >~||f||M.
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PROOF. Fix a complex smooth function f € C*°(C) and ¢,n € N. We assume that n > ¢ since
otherwise the assertion is trivial, because in such case

c-0\*
distr (7P < 1711 < () sl

We perform a linear change of the variable and we split the function f into its real and imaginary
parts, i.e.

) :%f(a+b+:;~(ba))7
ha(@) :Sf(a+b+z2-(b—a))7

so that fi(x) + fo(x)-i=f (%{bia)) for z € R and f1, fo € C*°(R) are real smooth functions.
By the classic Jackson theorems [Jackson, Timan, Cheney or Plesniak 4] we have

Hle)H[ 1,1]
(n+1) cei(n—0+2)

dist(_y 1 (fl,Pn(R)) <

Therefore we can find a polynomial p; € P,,(R) with real coefficients for which we have

nE

¢
el p1||[,1,1]_(2) (n+1l)n-...-(n—L0+2) fl [=1,1]
-1

0—1
:(gy.nil.n....-?n—ﬁ—&—Q Hle)H[ 1,1] _<g>e o Hf H -1’

because the expression

#f_}m (interpreted as 1 when ¢ = 1) diminishes when n > ¢ increases. By
Stirling’s formula we have ¢! > (f)l - /27l and consequently

é[— 1 e[

— < —
0 T 2o

which implies that

wt M=l < (55) o 90 = (59 = 1)

Note that because f; and fo and their derivatives are real functions, we have for z € [—1, 1]

\fl(@(”\f(fff)(mﬂfé“(ww\=‘(”;“>l.g‘;{<a+b+z-<b—a>)‘§ (b;a)f_‘

and therefore

o'f
924 ||,

I1f | o)L 24
1= Dill[-1,1 < Vol I.
Similarly there exists a polynomial ps € P, (R) such that
re-(b—a)\' 1 |[0'f
— < . .
[ f2 P2||[ 1,1] = ( in > Nl R ,

and finally we see that

dist7(f,Pn) = distj—1,1)(f1 + fo - i, Pn) < |(f1 + f2-9) — (p1 +p2 - 8)[[[—1,1) =
=(fr —=p1) + (fo —p2) - D=1y < s = pall—rg + 1 fe = P21 <

me-(b—a)\" |0 C-t
§<4n> . W I§< ) Hf”Ii O
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COROLLARY 8.6. For any compact set E CC R C C we have C*(E) C s(E) and furthermore there
erists a constant C' > 1 such, that

VfeC®(E) WeN - uug(éwf~[ﬂﬂb

ProoF. For the interval I := conv E we determine the constant C' from Jackson’s theorem 8.5. For
J € C(E) we consider an arbitrary extension f € C>°(C), such that fjz = f. Then for any £ € N we
have

supn’ - distp(f, P,) = supn’ - distE(f, P,) < supn’- dist;(f, P,) < (C- Z)Z . Hf||” < +o0.
neN neN neN

This proves that f € s(E) but also, by taking the infimum over all possible extensions f € C*(C), we
obtain

|fle=1fle+ Sugné ~distp(f, Pp) <
ne

< (140" it {Iflre : Fee=©. fiw=r}<(E-0)" 1flen

where C:=1+C. O
COROLLARY 8.7. Ewery interval I = [a,b] C R admits JP(1,2).
PRrOOF. Fix0< 6 <1, f € H™(Is) and ¢ € N. Cauchy’s integral formula implies that for each z € T

we have YAl f(¢)
(2) 2w JaB(z.) (€ —2)ttt
and therefore o f]l ¢
|f(z)(z)\ < % . (5“116 20 = 5*2 ANl g

(@) 14 20*
1Fllre = 1A+ 1Dl < {14 57 ) -1l < 5z 1F s

Consequently corollary 8.6 leads us to conclude that

~ L
e = (€-0) Al = (E-0)" o = (€-0) - 52 b, < (205£2> s

Finally for any ¢ > 1, not necessarily integer, we obtain

_ 041 . 041
20 - (£ +1)2 8C - 12
| firle < 1 fi1linegesny < <H> A fllzs < ( 5 > N fllzse O

]

COROLLARY 8.8. Every compact set E CC R C C admits JP(1,6).
PROOF. Fix 0 < § <1 and f € H*>(Es). Corollary 8.6 and proposition 6.12 imply that H>*(E) C

C>®(F) C s(F) and for all £ € N we have
= \¢ ~\! JONNY
e < (C0)  1lme < (C0) e < (C0) A myyume <

~ Y/
C-¢ ~(2d-€)5'£ C.95 . g5 (5 ¢
(@) Nflles < <2> N FllEss

- 6t é

where d > 1 is the absolute constant from proposition 6.8 on cutoff functions. Finally for any ¢ > 1, not
necessarily integer, we obtain

~ 04+1 ~ 041
C-2°.d° (£ +1)8 C -2t . g5 8
[fiele < figlnses) < ( E+1) ) Iflles < () Alflles- O

o o
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LEMMA 8.9. Forn,l € N, n>/{, put

P J!
ne i =mn" - —_
ot Z G+e+1)

j=n—~
Then for each such n, ¢ we have ¢, < e%'
PROOF. Note that
v g+t g g+He+ ) —gt-+1) 0 gted
G+0O! (G+L+1) (j+e+1)! (G+e+1)
and consequently
1 ! i+ 1)! nt (n—40)!
pme=nt- 3 L (L Gt _n (-0t
j=n—é€ G+o0O! (G+L+1) 14 n!

The latter expression decreases when n increases and therefore it attains its maximum when n = ¢. 0O

PROPOSITION 8.10. JACKSON’S THEOREM FOR THE COMPLEX BALL. Consider a ball B := B(zg, 1),
where zg € C, r > 0, and an arbitrary function f € A*(B). Then we have fip € s(B) and furthermore
the Jackson norms of the restriction fip can be estimated as follows:

VeeN o |fisle < (-0 lIfllB e,
where ¢ := max{2,r}. Additionally, provided that f € H*>(Bs) with some 0 < § <1, we have

c-l

{+1
vzt Usles (550)1ln

ProoF. Fix ¢ € N. By developing the function f into a Taylor series around the point zy we obtain
for all each point z € int B in the interior of the ball B

F&) =3 ;- (= z0)'

f(£+1)(z): i aj'(j!)!'(z_zo)j_g_lziaj-&-é-i-l'W'(Z_Zo)j~

j=t+1 jot-1 =0

We put € := 0 and apply Cauchy’s integral formula to both series to obtain

_ 1 f©)
a; = o -ABG (C— Zo)j+1 dCa

G, GEEFDE 1 / BRI
jHe41 ;i T oy €=yt %
This implies that for each j € N we have
L /15 1fll5
1 < —- B ¢ = LB
( ) |@J| = or /8B< (r+€)J+1 ‘ Cl (T+E)J,
(2) Qite |<#,i_/ [P dc| = 4! D
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Next put p,(2) == 377 _ga; - (2 — 20)?, pn € Py, and consider the remainder s, (z) = f(z) — pn(2),
sn € A>(B). Obviously for each z € int B we have [s,(z)| <3272, .| [a;]-77 so this estimate must hold
on the boundary 9B too. Therefore we can estimate the Jackson norms as follows:

o0
Fisle = I fllp + supn’ - distp(f, Po) < If 5 +supn’ - [sulls < [flls +sup [0+ 3 Jag) -+
neN neN neN et
If n > ¢ then we can apply inequality (2) and lemma 8.9 to obtain
, & o0 041 oo i i) "
3 il = 3 e e 3 I
= LG+ D)
j=n+1 j=n—1 -
= ne IFED g rTE < (-0 Y g
If n < £ then we use inequalities (1) with e = 0 and (2) to obtain
o0 Z oo
" Z lagl -7 =n"- Z |aj\'7"]+2|aj+e+1\'r]+e+1 <
J=n+l j=n-+1 =0
¢ o i
< Z ||f||B+27'.Hf(€+1)||B_rtz+1 <
B ] | >
j=nt1 =G+ + 1!
<00+ g 1D < Sl (0 £

In either case we conclude that

fiple < (U467 Il +r- (-0 D) <
< (e 0 (Il + 1S 5) = (e O - 1o < +oo.

Additionally, if f € H*°(Bs) with some 0 < ¢ < 1, then we use Cauchy’s integral formula to obtain
inequality (1) with € := ¢. Consequently we have

STEEDS e = () e = (=)
J T+5 6 r+0 1— - ° r+9 ) 3’

j=n+1 Jj=n-+1 T+5
00 n , £
L j ¢ r r . r
su n - a;|-r < su n - B =|— ] <"
nellz] j§1| ]l — ne[é)_'_( <T+6> (5 ||f||B§> <elogr+r5> 6 ||fHB(5

because for a,b > 0

—b a \¢
supn“~eb”:<—) .
neRy b-e

Since for each = > 1 we have (1 + %) > 1+ 1 by taking x = 1 we see that 1 + > (1 + %)6 and it
is also easy to verify that log 40 > § - log(1 + T) > 1.6 -min{3, r}. This implies that

=5

N llss =

Oq\ﬂ

¢ ¢
l r 12
< | = <
|f|B|€—|f”B+<e.1ogri—5> 5 f||B§_”f”B+<e-§~5~min{171 )
5¢c- 0\ r le.\* c le.\* c
= R < 2 L2 2 z
s+ (5e5) 5 10 < Ut (255) 5l < (1 (35°) )5l <

1+_l , 4 0 ¢ o 41
S<(5)> e < (55F) Ml < (5) e ©
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COROLLARY 8.11. Ewvery ball admits JP(1,1).
Our goal will now be to establish a general version of Jackson’s theorem in the complex plane.

LEMMA 8.12. For all( ¢ E CC C and n € Z we have

1 , 1
®p11(C) - (dist(C, B) + diam E) < diste(fe, Pr) < G T dmi(C B

PRrOOF. Fix n € N and take an arbitrary polynomial ¢ € P,,11 such that ||¢||z = 1 and ¢(¢) # 0.
Define p(z) := % so that p € P,,. Then we obtain

dist(fe, Pn) < lfe = Plle = sup |fe(z) = p(2)] =

lqll & _ 1

q(2) < _
~ (O -infaep [C =2 1g(Q)] - dist(C, E)

() - (€ —2)

= sup
zeE

We take the infimum over such g € P41 to arrive at distg(fe, Ppn) < m.
On the other hand for fixed n € N find p € P, such that distg(fc,Pn) = ||fc — pllg. Define

q(z) :=1—p(2)- (¢ — 2) so that g € Pp,+1. We see that

lglle = sup |1 —p(z) - (¢ — 2)| <sup|¢ — 2| - sup | fe(2) — p(z)| < (dist(¢, E) + diam E) - distg(f¢, Pn)
zeFE zelE zelE

and hence
O

l4(<)] !
2t 2 Yulls % (@H(C, B) + diam B) -dista(fo, Pr)

DEFINITION 8.13. For a fixed compact set E CC C, n € Z; and 0 <t < 400 let

Pu(t) = zé%fEt P, (2),

Here and further in this chapter we denote by 0F; the set {z € C : dist(z, E) = t}, i.e. the boundary
of the interior of the set E;, which can be a slightly bigger set than only the boundary of Ej.

REMARK 8.14. Note that for ¢ > 0 the functions ¢,, and ¢ are continuous or equal to +oo. Fur-
thermore we have for all ng < n and tg <t

¢n0 (tO) < ¢no (t) < ¢n(t) < (¢E(t))n7

where the first inequality follows from the maximum principle for subharmonic functions, applied to the
function log ®,,,, and the latter two inequalities follow straight from the definitions.

DEFINITION 8.15. For a compact set £ CC C and ¢ > 0 denote by K (F, ¢) a compact neighbourhood
constructed as follows. First we cut up the entire complex plane into closed squares of size § X J, starting
at the origin of the plane. Next we select all squares having a non-empty intersection with the set E
and by K(FE, ) we denote the sum of those squares.

Clearly we have E' C K(E,6) C Ej. 5. Also it is easy to see that the set K(F,J) consists of at most
(W + 2)2 squares and therefore the length of its border 0K (FE, §) is at most

diam E 2 4 - (diam Eg)2
fam B\ s (diam 5).
0 )

The following results were inspired by the proof of Runge’s theorem as given by [Gaier, chapter II
83 and chapter IIT §1]. They show that there is a direct relationship between the approximation of
holomorphic functions on a compact set and the behavior of its extremal function.
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PROPOSITION 8.16. For any compact set E CC C, 0< 6 <1 and f € H*(Es) we have

. NF s
Vasb<l WneN o distp(f,Pn) < (1—b)06l]-clz|5Eo+1(b-5)7

()

where the constant c 1= 27T—8 - (2 + diam E)2 depends only on the set E.

PRrROOF. Fix 3 <b<1landn € N. If ¢, 41(b-6) = 400 then the set E consists of n+ 1 or less points
and distg(f,P,) = 0, which finishes the proof. Otherwise find a § such that the number % is an
integer and furthermore
(1-0)-6

4- ¢n+1(b ’ 5)'

Let T" be the boundary 0K (Eb.(;, % ~5), with proper orientation, and cut it up into equal intervals

I'j, each of length ¢, so that I' = Uj I'j, with j running over a finite index set. As K (EM7 1T_b . 6) -

fhﬁ%'&ﬁ C E#_é we see that I' C E#ﬁ \ int Ey.s while for the length of T', denoted m(T"), we
ave

0<d<

~ 4 - (diam Ej)? dr - c
§=m(T) < < .
2 5=m() < by ~7-(1-b)-6

z?

set Es \ {z}. Let (o,¢1 € I'; for some j. Then the entire interval I := [{o, (1] lies in T'; and of course
dist(z,I) > b- 4. Since ¢, (¢) = % - (gf—(?ﬁ we have for all ¢ € I, thanks to Cauchy’s integral formula
applied to f' € H*>(Es)

R N
< 2
9.0 < ——

For z € E put g.(¢) := é(f) which is a holomorphic function in some open neighbourhood of the

SN P c ) B 5 P 5 1
(b-6)2 ~ 52p-02 (b-6)> (1-b)-b2-82 " (1—b)-6%

H) - O () - gull = /g;<<>d<\s/l|g;<c>||d<|s

EDR C'*( ~b)- 2 < (69

This leads us to

f(&)  f(Go)

We now see that for all z € E, all j and arbitrarily selected points (; € I'; we have
fQ)  f(G)

R R S A (O I
zﬂ/cdc‘zw/ G2 % Sgﬂ/ (>

1 6-|1f|l 5 3 flles 0
Sor / B om0 T 15 G 00

By summing over j we obtain

1 f(¢) 3-8 fle, _ 3-m(D) - I fll &
%./FC—ZCZC Rz ‘ Z47T 8- dnp1(b-0)  4m-5- Pnyr(b-0)’

where we denote

1 J ¢

where in turn ¢; = 5 - fr d¢ and hence |¢;| < 5= - ||fll&s - 5. Because by Cauchy’s integral

formula we have f(z fr ! (O ~ d( for all z € E, we now have found a rational function R, which
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approximates the function f uniformly on the set E (and actually in a certain large neighbourhood as

well):
m(@) - | f] &,
5 uma(b-0)"

Simultaneously by virtue of lemma 8.12 and by the minimum principle we have

1£ 1l - &
27 - Py (G5) - dist (¢, E)

If = Rlle <

diStE(R,P < Z ‘Cj‘ . diStE(ij,Pn) < Z
J

Z I£1le, - 0 _ Sl - m(T)
27 g1 (b-0) b6 27 dpi1(b-0)-b-0

because dist(¢;, F) > b- 6. Consequently, since % < 2, we conclude that

m(@) - | flles - | fllzs
471- - ¢n+1(b 6) N (1_b)62¢n+1(b6)

distp(f, Pn) < ||f — Rl|g + distg(R, P,) < O

COROLLARY 8.17. For any compact set E CC C, 0< § <1 and f € H>®(Es) we have

limsup {/distg(f, Pn)

n— oo

PRrROOF. Proposition 8.16 implies that for any % < b <1 we have

1 1 1
limsup y/distg(f, Pp) < limsup ——— =limsup sup ——— = limsup ——
n—oo n—oo Y/ On (b (S) n—oo z€0Ep.s \/ <I>n(z) n—oo /P, (Zn)
for some sequence {z,}neny C OFEp.5. We select a subsequence realizing the last supremum such that
Zn — 209 € OFp.s and then we see that

. . 1 1 1
lim sup lim sup sup

1 1
n—oo R/ Dn(z)  n—oo {/Bu(z)  Pm(20) = oh, B5()  6(b-0)

Finally we take the limit for b — 1 and note that the function ¢z is continuous or equal to +o00. [

DEFINITION 8.18. For a compact set E CC C and p > 1 we denote the level sets of the extremal
function as follows:

C(E,p) ={2€C : Op(z)=p}={2€C : gr(z) =logp}.

Note that for convenience we extend Green’s function to the entire complex plane by putting gg(z) := 0
for all z € E.

REMARK 8.19 [Gaier, chapter II §3.A theorem 1]. A more precise version of the previous corollary
is obviously well known. If the set F CC C is not polar and for f € H*°(E) we have

p = sup {g : 3]76 H™ (C(/E,\Q)) such that ]?|E = f|E} > 1,

then
limsup {/distg(f, P,
COROLLARY 8.20. For any compact set E CC C we have H*(E)|p C s(E) if and only if it is
polynomially convex.

PRrROOF. The implication (=) is the subject of remark 8.4.
Conversely, if the set E is polynomially convex and f € H®(FE) then there exists a § > 0 such that
f € H®(Es). From definitions 1.10 and 8.13 it follows that ¢g(d) > 1 and therefore by corollary 8.17

we have
limsup ¥/distg(f, Pn) <1

n—oo

which implies that f|p € s(E). O
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LEMMA 8.21. For any L-reqular compact set E CC C, ( € F; \E, 1<p<Pgr() andn € Z, we

have c-(n+1) 14 e
diste(fe-Pu) € G C(E ), B) - doi(C. B) <‘1’E(C>) ’

where ¢ > 1 depends only on the set E.

Proor. We put
d:= max dist(z, E)
2€C(E,||®Ellp, )

and ¢ := 1+ d + diam E, which depend only on the set E. Fix ¢ € By \ E, 1 < p < ®p(¢), n € Z,
and consider any n € F; \ E. Note that for the Lagrange interpolation polynomial with knots in n + 1

Fekete extremal points {zj(n)} - C E and wy(z2) := H;L:O (z — z](n)) we have
j=0,...,n

 wn(n) — wnl2)
Luta(2) = G ) o =2):

This is true because clearly L,, € P, and for j = 0,...,n we have w, (z](n)) = 0 and hence

Lufy (7)) = . —12:(-") = fa (7).

J

Consequently, applying the properties of Lagrange interpolation polynomials discussed in remark 1.8,
we see that for all z € F we have

= 1= (n=2) Lafy(2)] < 1+ (dist(n, B) + diam E) - (n+ 1) - | fyl| 2 <

1 <c-(n—|—1)

Sit(dtdiamB)-(n+1) 30075 < Tt B

Now put Ay (8) := log |wy, (8)] — (n+1) - g (#), which is a harmonic function on C\ E, bounded when
¢ — oo. For any § € C(E,p) C E4\ E and z € E we have

_ dist (6, B) - lwa(2)| _ dist(C(E, p), E) - |wn(2)]

o (6)] 2 c-(n+1) - c-(n+1) ’
hn(0) = log (diSt(C(fj Zivfi). |wn(2)|> —(n+1)-logp.

The L-regularity of the set E implies that the level set C(E,p) is the boundary of the open domain

Q:={2€C : ®g(2) > p} and ¢ € Q. Therefore the minimum principle for harmonic functions leads

us to

dist (C(B, p), E) - [wn(2)
c-(n+1)

hn(C) > log (

and this then implies that

)—(n-l—l)-logp

dist(C’(E,p),E) < wn (2)]
c-(n+1)

log |wn(¢)| > log ( ) +(n+1) - (9e(¢) —logp),

wn(2) c-(n+1) ( P )nﬂ
wa(Q)| = dist(C(E, p), E) \2£(Q) '

Returning to the Lagrange interpolation polynomial we obtain for all z € E

wn(2)

wn(¢) - (¢ = 2)

ol (e )
= dist(C(E,p), E) \®5(() ¢ — 2|

Ik@)—Lm&@H=’

and ultimately

disti(foPo) < s — Lnfells < c-(n+1) p \"! O
iste(fe, Pn) < |[fe = Lufelle < dist (C(E, p), E) - dist(C, E) <¢E(g)) :
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LEMMA 8.22. Assume that a polynomially convex compact set E CC C admits L£S(s) and HCP(k)
for some s,k > 1, i.e. there exist ai,as > 1 such that for all z € Ey

1
— dist(z, E)* < gp(z) < ag - dist(z, B)Y/*.

ay

Then there exist cg,c1 > 1 dependent only on the set E such that

nt c1 -4 E+co
Ve>1 Vo<t<l1 Sup<< ) )

neN ¢n(t) B (5
PRrOOF. Fix ¢ >1and 0 <t < 1. By lemma 8.21 for arbitrary ¢ € 0F;, p := 1/®g() = e95(/2 > 1
and n € N we have .
. c-n p
dist y Prno1) < — . ,
istis(fe, Pn-1) dist(C(E, p), E) -t <<1>E(g)>
where ¢ > 1 depends only on the set . We combine this with the result of lemma 8.12 to obtain
" (dist(¢, E) + diam E) - distgs (fe, P_y) - n’ < ¢ ptH <1>n -
®,(¢) ~ 7 FAe Tnmt ~ dist(C(E,p),E) - t p) =

¢ 041\ ¢ 20\
= dist(C(E,p),E) t <e~logp> - dist(C(E7p)7E) t (QE(O) ’

where ¢ := (1 + diam F) - ¢, because for a,b > 0

—b- a \¢
supn“-eb":(—> .
neR4 b'e

By the assumption HCP(k) we know that for all z € C(F, p) we have log p = gg(2) < a - dist(z, E)'/*
and therefore

dist(C(lE,p),E) = (loa;p> - (932))

On the other hand the assumption LS(s) tells us that

tS

1
i dist(¢, E)* < gr(C),

so we can combine these estimates to obtain

n _¢ ( 2a5 )’“ ( 20 )”1 _e (2a1 ~a2>k (2a1 w)‘“ _ (Cl .e)”co
®,(¢) ~ t \gr() 9e(¢) Tt ts ts At ’
where ¢g := k + 2 and ¢; := ¢ 2a; - ag depend only on the set E.

Finally we conclude that

nt nt < (cl -E)HCO O
SUp —— = sup sup —— < :
neN On(t)  nencear, Pn(C) ts

PROPOSITION 8.23. For any compact set E CC C and s,v > 1 the following two conditions are
equivalent:

WIP(s) de 3eo>0 W>1 3e,>1 YO<3<1 VYfeH®(E;

Cy

L4+co
(i) le< (55) - Iflss,
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¢ ~ \ {+¢o
(ii) Joo>0 Ve>1 36, >1 Yo<t<1l VneN : —=" g(cf) .
¢n+l(t) t*

Furthermore we have ¢y < ¢1 - €% for all £ > 1, i.e. the set E admits JP(s,v), if and only if ¢ < ¢p - £¥
for all £ > 1.

PROOF. (i)==(ii) Fix 0 < t < 1 and arbitrary ¢ € 0F;. Let 6 := £ and fc € H>(Es) as in definition
8.3. Then by the assumption we have for all £ > 1 and n € N

S

L+co L+tco+1
) Cy l+co 25 . Cy 2 25 . Cy
nt. diste(fe,Pn) < |fiple < (573) Afelles = < e > " < < e > :

Lemma 8.12 implies that

¢ ~ N\ {+¢co
n . . ¢ 1. Cy
— < 3 . . 3 < —
5on(0) = (dlbt(c, E) + diam E) n - distg(fe, Pn) < <t5> ,

where ¢y := ¢p + 1 and ¢y := (1 + diam E) - 2° - ¢; depend only on the set E. Therefore, since ¢ € F;
was arbitrary, we conclude that

n’ nt - (~ )HEO
= sup ——— < | — .
¢7L+1(t) CEDE, (1)77+1(§) t*

Furthermore if ¢y < ¢; - ¥ for all £ > 1, then we have also ¢y < (1 +diam E) - 2% - ¢y - ¥ = ¢ - £V,
(i)<=(@{i) Fix £ > 1,0 < § <1 and f € H*(Es). We now apply proposition 8.16 with b := % and
t:=1b-6 to obtain for any n € N

¢ ¢ ~ \ {+¢o
‘i c e lfle, 2 nt 26 (G L
n dlStE(fa Pn) = (1 — b) ] (52 R ¢n+1(b R 5) 52 ¢n+1(t) ”f”Eo = (52 15 ”f”E&

2 (2.7 ¢ 25\ Tt
=57 |5 e < (=% Al

From this it follows that

Cy

’ . L4co
fiple =1 le +supn’ - distp(£,Pa) < (5) - 11110,
neN 0

where ¢ := ¢y + 2 and ¢ := 1+ ¢- 2% - ¢y depend only on the set E. Furthermore if ¢, < ¢; - £Y for all
£>1, then we have also ¢y < 1+¢-2%-¢1 -4 < ¢y - €%, O

THEOREM 8.24 JACKSON’S THEOREM IN THE COMPLEX PLANE. Any polynomially convexr compact
set E CC C admitting £S(s) and HCP, where s > 1, admits JP(s,1).

PRrROOF. This is an immediate consequence of lemma 8.22, remark 8.14 and proposition 8.23. O

REMARK 8.25. In [Newman, lemma 4] an estimate equivalent to JP(1,1) with ¢ = 2 was proven for
all simply connected bounded regions with boundaries that are Jordan curves of class C**9.

PROPOSITION 8.26. For any compact set E CC C and s,s',v > 1 such that s’ > s we have
JP(s,v) = WIP(s) = LS(s),
JP(s,1) = ELS(s).

PRrROOF. The implication JP(s,v) = WJIP(s) follows straight from definition 8.2.
If we assume that the set E admits WJP(s) then proposition 8.23 implies that

¢ ~ \ {+¢o
>0 Ve>1 35 >1 Vo<t<1l VneN - i g(‘”) .
Gnt1(t) ts
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From this it follows that for arbitrary 0 <t <1, ( € 0F;, n € N and ¢ > 1 we have

<\ (430
t
9e(¢) =log ®g(¢) > log "/ Ppi1(C) > log "/ dpy1(t) > —— - log ( (~> ) )

Ce

Specifically by taking n € N such that

~ \ 140/t ~ \ 140/t
C

e.(e) Sn<e.<%> +1
ts ts

we find that
Y4
95(¢) > —— -loge’ > R
n+1 .. %) 0 49
S S S
Z e.,cvel+co/£+2 6'5['1-1—00/6_’_2

and by taking ¢ sufficiently large, we obtain LS(s’) for any s’ > s.
Finally if we assume additionally that ¢, < ¢; - £, i.e. the set E admits JP(s,1), then we can take the
limit of the last estimate for £ — oo to obtain

¢ ‘
- s-(14-Co /¢) (1+¢0/€) _
95(0) 2 eh_g’lo e- NzH—CD/Z - dist(¢, B)° R Kh—g}o e- (¢ -6)14-60/8 +2 - dist (¢, B) ’
1 5 1
— 1‘ _ 'd. t E s~(1+co/5) — _ .d. t E ,S. |:|
e ¢ (¢ - 4)c/t 4 2/0 ist(¢, E) A ist(C, )

PROPOSITION 8.27. Any compact set E CC R admits £S(1).
Proor. Fix z € E7 \ E and write z =  + y - i where z,y € R. We denote

a :=min | — x|, b:=14max|( —z| > a,
CEE (EE
c:=2+diam E > b, d:=dist(z, E) =va?>+y?> <1<eg

and observe that c is independent of the choice of z. Consider the mapping

e _ @ tad)2— ()

and note that ¢(E) C I := [-1,+1] but
a + 12 d2

(b? +a?)/2—(y-i)? b*+a®+2y°
L e (Y R B AR e Bk S« N
Now if p € P,, with n € N and ||p||; <1 then po € Py, and ||po ¢||g < 1. Therefore

@5(z) =sup { /() : meN, pePu, pllz <1} >

Zsup{z{‘/pod;(zﬂ :neN, peP,, ||p||1§1}: fI)I(q/J(z)).

Because of the fact that ¥(() := % . (C + %) is a conformal mapping of the exterior of the unit ball onto

the exterior of the line segment I, theorem 1.11.c leads us to

@1(¢) = [97HQ) = ¢+ VP 1

for all ¢ € R such that ( > 1. Finally we see that

> /%, \/w
d2 d2\ 2
=142 g + <1+2 [ 1+2-Cz) —1=
WF PR Wg

because 0 < 2¢ <2and\/1—|— t>1+Lfor0<t<3. 0O

2d
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COROLLARY 8.28. Fwvery compact set E CC R C C, which admits HCP, also admits JP(1,1).
ProoOF. This is an immediate consequence of proposition 8.27 and theorem 8.24. [
Note that this corollary improves the result of corollary 8.7.

LEMMA 8.29 [cf. Plesniak 6, theorem 1]. Assume that the compact set E CC C is the sum of two
polynomially convez, disjoint, non-polar compact sets, i.e. E = AUB, A=A, B = B, ANB =10,
cap A > 0 and cap B > 0. Then for any function f € C(E) such that fia € s(A) and fip € s(B), we
have f € s(E) and furthermore we can estimate its Jackson norms on the set E by its Jackson norms
on the sets A and B as follows:

Ve>1 o |fle < (e 0" (Ifiale +1fisle) s
where the constant ¢ > 1 depends only on the sets A and B. Note that these are three different Jackson

norms and only the domain of the function indicates which norm is meant.

Proor. We put

X(Z):{O ifze A

1 ifze B

—

and we note that this function can be extended holomorphically so that y € H> (C (E, p)) for some
p > 1. Therefore by remark 8.19 we can find a constant M > 1 such that

M
YneN distE(X,Pn)Sp—n.

Let also x := max{||®4||5,||P5||4a} and note that 1 < z < +0o0, because the sets A and B are non-polar
and compact. Therefore we can determine a number a € N so that ¢ := ’;—a > 1.

Now fix an arbitrary function f € C(E), such that fi4 € s(A) and fjp € s(B), and £ > 1. Find
three sequences of polynomials of best approximation for the functions f|4, fjp and x on the sets A,
B and E respectively, i.e. D, Gn,Tn € Pn,y ||f — pulla = dista(f, Pn), ||If — qullz = distg(f, Pn) and
llx = rnlle = diste(x, Pn) for each n € Z;. Using the Bernstein-Walsh-Siciak inequality we see that

[Palla = Ilf = (f =po)lla < Iflla+ Il = palla = [[flla + dista(f, Pn) < 2 [|f] 4,

IpnllB < 1@l - [[pnlla < 2™ - [lpnlla < 22" - f]]a

and similarly
lanllz < 2-[[f1lB,

lgnlla <2z | fll5-
For each n € Z; we put
Sn(2) = pn(2) - (1 — ra.n(z)) + Gn(2) Tan(2)

so that s, € P(g41).n- This way we obtain

Hf - Sn”A = ”f —Pn+Tan- (pn - Qn)HA < Hf _anA + ||Ta~n||A : Hpn - QnHA <
|f|A|e

< dista(f, Pa) + dist (X, Pe. >~(||pn||A+||qn||A) p”: +pan (21 flla+22" - | £]) <
_ Mfiale _ fiale
< = "ol = A 2,
pr

Hf - SnHB = Hf —dn + (1 - ra-n) : (Qn _pn)”B S ||f - QnHB + ||1 - Ta»n”B ) ||Qn _pn”B S

. . [ n
< distg(f, Pn) + distg(xX, Pan) - (anHB + llpnlls) < | LBV + pan (20 |IfllB + 22™ - || f]la) <
|f|B\/ |f|B\/

"ellflle = — I flle,s

_n pa
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which leads us to

) 4M - nt
n’ - distg(f, Plat1)n) < n' - I1f = salle < [fiale + [ fisle + o Ifle <
e\ _
< [flale + |fiple +4M - <6~logt) Nflle < @0 (Ifjale+ 1fisle)

where ¢ := 1 4+ max { eﬁ%t, 1} depends on the sets A and B but not on the choice of the function f and
¢. Finally for arbitrary n € Zy4 we can find N € Z, such that (a+1)- N <n < (a+1) (N +1) to see

that

n’ - distg(f,Pp) < ((a+1) - (N +1))" - distg(f, Prasi)n) <
< (4a)" - N* - distg(f, Pas1)n) < (da-c-0)° - (|flale + 1 fBle) ,

[fle=Iflle + Sugne ~distp(f, Pa) < (-0 (|fiale + fiple) < +oo,
ne

where ¢ := 1+ 4a - ¢ also depends only on the sets A and B. [

PROPOSITION 8.30. Assume that the compact set E CC C is the sum of two polynomially convex,
disjoint compact sets, i.e. E=AUB, A=A, B=B and AN B = 0. If the set E admits JP or WJP,
then both subsets A and B admit JP, respectively WIP, with the same coefficients.

Conversely if both sets A and B are additionally non-polar and they both admit JP(s,v) or WIP(s),
for some s,v > 1, then the set E admits JP(s,v + 1), respectively WIP(s).

PROOF. In order to prove the first assertion, we first blow these sets up so that dist(A4, B) > 2 and
next we apply proposition 8.23 to obtain condition (ii) for the set E. Then we note that the extremal
functions ®,, of the sets A and B are bounded below by the extremal functions of the set E and this
way we obtain the same condition (ii) for the sets A and B. Finally we apply proposition 8.23 again to
conclude that they too admit JP, respectively WJP, with the same coefficients.

The second assertion follows straight from lemma 8.29. [
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CHAPTER IX

EXTENSION PROPERTY BY PLESNIAK (EXT)

DEFINITION 9.1 [cf. Eggink, definition 3.3; cf. Plesniak 1, theorem 3.3]. A compact set E CC C
admits the Extension Property by Plesniak EXT if it is .4°°-determining and there exists a continuous
and linear extension operator L : s(E) — A% (E), such that

Vies(E) : (Lfye=/f

Here the space A (E) is normed by the usual seminorms ||D®f||x, where o € Z3, K cC C.

Building on earlier joint work with W. Pawlucki [Pawtucki-Plesniak 1; Pawlucki-Plesniak 2], W.
Pleéniak originally proved the equivalence of GMI and EXT for C°°-determining compact subsets of
RN, N € N.

THEOREM 9.2 [cf. Eggink, theorem 3.4; cf. Plesniak 1, theorem 3.3]. For any polynomially convex
compact set E CC C we have
GMI < EXT.
PROOF. (=) We assume that the set F admits GMI(k), i.e.
IM>1 VYneN YpeP, : |plle<M-n*-|p|e.

Proposition 1.18 implies that

vneN VpePn : |plg,,, <M-|ple,

where M := e . From propositions 1.21 and 5.4 we know that the set E is A°°-determining.

Now we fix a function f € s(F) and for each n € Z, we take L, f € P,, to be a Lagrange interpolation
polynomial of this function with fixed knots in n + 1 Fekete extremal points of the set E. This means
that

Lnf(z) = i f (C}P) “Lnp (Z§ (gn)v ) Cr(Ln)) )
=0

where for n € Nand 4 =0,...,n we put

Ly, (z§<on)a--~7<7(zn)) = H %7

v=0,...,n S T SV
VAP
where the set {(0"), ceey ,(1")} C F of Fekete extremal points is chosen so that it realizes the maximum
n+1 times
—_——
on E"! = E x ... x E of the expression HO<#<V<n ﬁn) — QS") , while Céo) is an arbitrary point of the

set &2 and Lo (z; Céo)) := 1. This implies that for all n € Z; and p,v =0,...,n we have

). A . 0 ifpu#v,
Ln,u(cw;cé”,...,cﬁ)){l tly
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and thus L, f (Cl(,n)) =f (C,E")). Also from the choice of the Fekete extremal points it follows that for

all z € E we have |L,, , (z; C(()n), el 51”))‘ < 1 and therefore

1Eaflle < 3 Iflle- |

pu=0

We define the desired extension Lf as follows:

Lf:=ui Lof+ Y tn- (Lnf = Lnaf),

n=1

where u,, € C*(C), n € N, is a sequence of cutoff functions as constructed in proposition 6.8 for the
compact set K := F and radii ¢, := #

We will show that this series is convergent together with all its derivatives. For this purpose let’s fix
a € Zi and n € N. We use the Leibniz rule to see that

10 - 0f = Eocs D)l € 32 (510700 D* (0t = Lncs e =

2
Bez2
Bla

= Z (g) . HDﬁun . Da_’B(Lnf — Ln—lf)”El/nk S e
Bl

since up, = 0 outside of Ey /,x,

(0% _
o2 5 (5) 1Pl 1D L = Ll <

Ba

<> (E) Clgy 0P M DAL f — Locaf)le < ..

BLa

because of the properties of the cutoff functions u,, and the fact that D* #(L,f — L,_1f) is a holo-
morphic polynomial of degree n at most,

< Z <a> Oy - PP M Mo gk =B L L fle =

BLa B
Bo=ag
« —~ _ o ~ o
= <ﬁ) Clgy - M- MO=P k1ol L f Ly flp = Co -1l | Ly f = Lo s,
B<La
Ba=ag

where C,, := Zﬁlgal (gi) -CBy4as M - M®1=P1 are constants depending solely on the set E.
Now take p,, € P, to be any polynomial of best approximation, i.e. ||f — pn|lg = distg(f, Pn). Since
L, is a linear operator preserving polynomials of degree n or less, we see that

[Lnf = pnlle = [Lnf = La(pnip)lle = [Ln(f = pop)le < (0 +1) - [[f = pollz = (n 4+ 1) - diste(f, Pn),

”f - LanE = ”(f _pn) - (Lnf _pn)HE < ||f _anE + HLnf _pn”E < (n+2) : diStE(fa Pn)

Furthermore we have

HLnf - LnflfHE = ||<f - Lnf) - (f - Lnflf)HE < Hf - LanE + Hf - LnflfHE <
< (n+2)-distg(f,Pn) + (n+ 1) -distg(f, Pn-1) < (2n+ 3) - dist g(f, Pn-1),
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and therefore
1D (s (L f = Lus )l < Ca - 19 (20 4 8) - dists(£. ),
which for all n > 2 leads us to

nklel . (2n + 3)

”Da(un : (Lnf - Lnflf))”(: < 504 . W : |f|k~|o¢\+3'

Finally we obtain

ID*Lfllc < ID*(u1 - Lof)llc + Z 1D (- (Lnf = Ln—1f))llc <

< Clay - (™) + 5C, - dists(f, Po) + Ca - Sjaf - |flkjaj+s <
< (C|a‘ + 5Ca + Ca : S|a|) . |f|k‘|a\+3 < +o00,

where for ¢t € Z we put

o nFt(2n+3) =26t (n— 1R T (n—1) BN 1 T e
St = Z (n —1)kt+3 = Z (n—1)kt+3 A Z (n—1)2 "6 s
n=2 n=2 n=2

As the constants (C|a| +5Cq + Cy - S\al) depend only on the set F, this proves the continuity of the
operator L : s(E) — C*(C), the linearity of which is obvious.

Now we know that Lf € C>°(C) we will show that (Lf)z = f and Lf € A>(E). For this purpose
let’sfix z€ F and a € Zi such that as > 1. It is easily seen that

= Lof(z Z — L1 f(2)) = lim Ly f(2) = f(2)

and

DLf(z) = D*Lof(z Z (D° L f(2) — D*Ly—1 f(2)) = 0,

because u, = 1 in a neighbourhood of E, f|g € s(E) and the polynomials L, f are holomorphic.
We conclude that L : s(E) — A>(E) is a continuous and linear extension operator as required.
(<=) By the assumption there exists a continuous and linear extension operator L : s(E) — A*®(E).
Continuity means that

VK CcCC VaeZ: 3keN Ja_i,ag,...,a, >0 Yfes(E)
ID*Lfllx <a-1-|fl-1+ao-|flo+ .. +ak|flk

Since |f|—1 <|flo < |fl1 < |fl2 < ..., we have
VK CCC VaeZ? JkeN IM>0 VfesE) : |DLf|x <M-|flx

and specifically, by considering only polynomials and taking K := E and « := (1,0), we obtain

JFkeN IM>0 VneN YpeP, < M - |pgl-

E

3L(P\E)
0z
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Fix arbitrary n € N and p € P,,. Because distg(p, P;) = 0 for j > n, we see that
piele = [IPle + supj (distp(p Py) = liplle + | max g" - distp(p, Py) <

S“p"ﬁ(”—l)’“'K?BX dists(p,P,) < ol + (0 — VP - [l < - [l

Furthermore, since the set F is assumed to be A°°-determining and we have there L(p E)| E = p|g, then
also

OL(pik)
1) () =e.
0z B |
Combining these three estimates we obtain
OL(pk)
1 = | 5| < el < 01 ol
E

which proves GMI. 0O

REMARK 9.3. A careful inspection of the constants in the proof of the previous theorem reveals that
for all a € Z3 \ {(0,0)} we have

C~'a < Z (gi) . (d (ﬁl +a2))4-(ﬁ1+a2) . M Moqfﬂl <

B1<ar

Z ( ) (d-|a |)4"“‘.J\7.M|a‘g(2d-1\7-M~|a\)4m',

~ ~ e —~ 4-|a| 2
Claj +5Ca + Ca+ Sjay < (d-|al)*"* + (24 M - M - Ja ) -(5+776T~2’f'“') <

4-|al

— e 2 — . o Ao
< (2d~M~M~|a|)4| -<6+7g-2’€'|al> < (24-M-MJaf) (641225 < (dy o) ",

while )
—~ T
Co+50(00)+0(00) So < d—+5d- M+d M - ?<18d M<d1,

where d > 1 is the absolute constant from proposition 6.8 on cutoff functions and dy := 9d - M- M. 2F
depends only on the set E. Consequently for all f € s(E) and o € Z3 \ {(0,0)} we have

IDLflle < (dy - la)*"*! - |l jap+s,

ILflle < di-[fl]s.

REMARK 9.4. Note that the operator L constructed in theorem 9.2 preserves each polynomial in a
certain open neighbourhood of the set E. Indeed, if p € P,, for some n € N, then for all z € U,, :=
{zeC:dist(z,E) < C Ny {z € C:uy(2) = 1} we see that

.
L(pie)(2) = u1(2) - Lo(pie)( +Zuj L;(pip)(2) = Li-1(pp)(2)) =
=u1(2) - Lo(pp)( +Zu] Li(pp)(2z) = Li—1(pjp)(2)) =

o))+ S (L 01) (2) — Lya(p2)(2) = L)) = p(2),

j=1
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because for all j > n we have L;(pg) = p.

Note also that in the proof of the first implication (=), we needed the assumption that the set £
is polynomially convex only in order to deduce that it is A°°-determining. In fact for any set admitting
GMI, it is possible to construct a continuous and linear extension operator as in the theorem.

In the converse proof (<), we needed the assumption that the set E is A*°-determining only in order
to obtain equality (1). Instead we could also assume that the operator L preserves each polynomial in a
certain open neighbourhood of the set E. Without either one of these two assumptions, the implication
(«<=) would not be true. To see this consider the set E := {0}, for which s(F) = C, and the operator

L:s(E)> f— Lf € A°(E) Lf = f(0).
Then we have
VK CCC VaeZl VYfes(E) : |D*Lf|x <|f(0)]=]|fl-1.

which demonstrates the continuity of the operator L.

COROLLARY 9.5. For any polynomially convex compact set E CC C we have
() H(E) 1 C s(E) N A™(B) s € C¥(E),
while if it additionally admits GMI, then we have
(ii) H*(E)|p C s(E) C A®(E)| g CCT(E).
Furthermore for any compact set E CC R we have
(i) H®(E)s © A(E) 5 = C*(E) C (E),
while if it additionally admits GMI, then we have

(iv) H>(E) |z C A®(E) g = C*(E) = s(E).

PRrOOF. The inclusions H*(E)|p C A®(E)p C C*(F) are trivially true for any set £ CC C, while
the inclusion H*(E)|p C s(&) follows from corollary 8.20, provided that the set E is polynomially
convex. Additionally the inclusion s(E) C A*(E)|g, which is essentially S.N. Bernstein’s theorem [cf.
Plegniak 1, theorem 3.3.iii; cf. Bernstein 1], follows from theorem 9.2 for any set £ CC C admitting
GMI (even if it is not polynomially convex - see remark 9.4) and this finishes statements (i) and (ii).

Furthermore from corollary 8.6 following Jackson’s theorem we know that C*(F) C s(E) for any
compact set E CC R and together with statement (ii), this leads to statement (iv). Finally, if F CC R,
then the interval I := conv E¥ admits GMI and we see that

CX(E)=CI)p = (AU))1),; = A°I)|g C A®(E)g,

|E
which completes statement (iii). Note that this last inclusion can also be proved by solving a simple
differential equation. [J

ExXAMPLE 9.6. Without the assumption that the compact set £ CC R admits GMI, the inclusion
s(E) C C*°(FE) does not have to be true. Consider for example the set £ = {0} U U;’il {-%.5%} and
the function f(x) :=|z|. Clearly f ¢ C*(E) but we will show that f € s(E).

Indeed consider the following Lagrange interpolation polynomials for n € N

pn(l‘) = Z 2K ~J32 . H 44:1,722__711

p=1,....n v=1,...,n
vF#p

Note that p, € P2y, and p,(x) = f(x) whenever z = 0 or |z| = 55 for some j € {1,...,n}. Therefore
we have

diStE(fa PQTL) < ||f*pn||E = ”f*pn”EmB(Q ) + ”p”HEﬂB(O, 1 )

o1

) < Hf”EmB(Q

1 1
onF1 onF1
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For any € EN B (0, 5:4+) we have | f(z)| = || < 5 and

< Y 1 a1 .1 1|
|pn(l')| —= 28 4n+1 ’ H qrv—p — 1 | — Z 28 4gn+1 ’ H 1 _ B
1
n=1,...,n v=1,...,n n=1,....,n v=1,...n' 4
vFEL v

n—1 n—1 n
_ gu . L (A g L (AN 3 (2
A gn+1 3 — gn+1 3 8 3

. 1
dlStE'(f7 PQn) S 2n+1

We conclude that

K
8
from which it follows that f € s(E). O

REMARK 9.7 [cf. Ple$niak 1, theorem 3.3.iv-vi]. We saw already that if a compact set £ CC R admits
GMI, then A*(E)p = C>*(F) = s(F). This allowed W. Ple$niak to assert in his extension theorem
three equivalent topological properties of the function spaces s(F) and C*°(F) with their respective
Jackson and quotient topologies. However without additional assumptions there is no obvious analogy
in the complex case.

REMARK 9.8. The characterization of compact sets £ CC C, for which A*(E)|g = s(E), remains
an open problem, especially for totally disconnected sets. In [Siciak 3, theorem 1.10], J. Siciak proved
this property for simply connected continua for which the conformal mapping v : C \ B(0,1) — ¢ \ E,
with ¢ (c0) = oo, is Holder-continuous in the annulus {z € C : 1 < |z| < 2}. Subsequently we
were able to generalize this result for a finite union of such disjoint simply connected continua. More
recently L. Gendre constructed an approximation technique for functions of the class A*(E) g, where
E cc CV, N € N, is Whitney 1-regular and admits HCP as well as LS, which allowed him to assert that
A®(E)|g = s(E) [Gendre, corollary 7]. It remains to be verified whether the assumption of Whitney
1-regularity can be somehow circumvented in the case of sets on the complex plane.
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CHAPTER X

EXTENSION PROPERTY BY BOS-MILMAN (EXP)

L.P. Bos and P.D. Milman, adapting earlier work by W. Pleéniak, formulated a different extension
theorem for compact subsets of RN, N € N. They proved that any such set admitting GMI also admits
a ”"bounded extension of C* functions with homogeneous linear loss of differentiability (in the quotient
topology)”. We modified their definition of the extension property so that it can be deduced from GMI
for any polynomially convex compact subset of C. In this definition we replaced the quotient norms
| - | 2,m-¢, where m € N, with Jackson norms | - |i.¢4¢,, where k > 1, as they work well for functions that
are holomorphic in some open neighbourhood of a polynomially convex compact set.

DEFINITION 10.1 [cf. Eggink, definition 9.1; cf. Bos-Milman, definition 3.10]. A compact set E CC C
admits the Extension Property by Bos-Milman EXP(k, ), where k,u > 1, if it is .4°°-determining and

Vfes(E) 3f € A°(E)

(a) :fVIE = f,

®) flco <ce-lIflle,

(c) ||ﬂ ce < (c2 'f“)“_cl Nflk-t4e, forall £ €N,

with some cg,c; > 0 and ¢ > 1 dependent only on the set E. We will write that the set E admits EXP,
if it admits EXP(k, ), for some k,u > 1.

REMARK 10.2. In remark 9.3 following Plesniak’s theorem 9.2 we showed similar properties of the
extension Lf. However here we want to estimate the norm | - ||¢ of the extension by the usual norm
|| - |z of the function itself, rather than |- |3 or even || - ||z, for some § > 0. In order to achieve this
L.P. Bos and P.D. Milman modified W. Pleéniak’s proof, however at the expense of the linearity of the
extension operator.

By the way, L.P. Bos and P.D. Milman have also proved the existence of a "bounded linear extension
of C*° functions with homogeneous linear loss of differentiability (in the quotient topology)” for compact
subsets of RV, N € N, admitting ”quasi-geometric local bounds on polynomials”, which in turn is
equivalent to LMP. It appears that a corresponding theorem is true for compact subsets of the complex
plane too.

PROPOSITION 10.3 [Bos-Milman, proof of theorem B]. For any compact set E CC C and coefficient
k > 1 there exists a sequence of decreasing cutoff functions u, € C°(C) such that for alln € N

(1) 0<Upy1(2) <uUp(z) <1 for all z € C,
. 1
(15)  up(z)=1 if dist(z, B) < SE’
1
(4i1) Un(z) =0 if dist(z, E) > 5
(iv) [ DYUnllc < Cq -p(kFD)-lal for all a = (a1, a0) € Z%

where Cy := (d-t)* fort €N, Cy:=d and d > 1 is the absolute constant from proposition 6.8.

PROOF. For each j € N denote by u; € C*°(C) the cutoff function constructed in proposition 6.8 for
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the compact set K := E and radius ¢; := 1 e
J
(@) 0<u;(z) <1 for all z € C,
() wui(z) =1 if dist(z, E) < %
(¢) uj(2)=0 if dist(z, E) > €,

|

(d) ||D%ujl|c < for all & = (a1, a2) € Z2

]
J

where C; := (d - t)* for t € N, C :=d and d > 1 is some absolute constant. We define u,, € C*°(C) as
follows:
Un(2) := H uj(z)
j=1,....n

and we see that conditions (i), (¢4) and (iii) are obviously fulfilled. In order to verify condition (iv), we
note that by the Leibniz rule we have for a € Zf_

D%, = > ay-DVuy-...-D7u,
Tt Y=o
with some combinatorial constants a, € N, where v = (y1,...,79,) and 71, ..., € Z2. We conclude
. y=(y Y. ¥ Y. 1
that
DaN < D’Yj < C"le <
ID°tlle< S ey [T IDVules Y ey [ TR<
Y1t Hrn=a i=1,..,n Y1t ATn=a j=1,...n €j
(d- m)zum (d - |af)* il
< . RS . RS et VA
< > e ]I < 2 e 1l i1
Yi+... Y= Jj=1,....,n 6]‘ Y1+ Y= j=1,....n €n
. 4-|al . 4-|al
= Y o, @A e @ DT el
|ex] |ex]
Y1t F V= €n €n
because _a~ < nl®l which follows from the proof of the Leibniz rule by induction. [
Y1t Fvn=a Y

THEOREM 10.4 [cf. Eggink, theorem 9.2; cf. Bos-Milman, theorem B]. For any polynomially convex
compact set E CCC, k' >k >1 and u > 1 we have

GMI(k) = EXP(k +1,4),
EXP(k,u) = GMI(K').

PROOF. Let’s first assume that the set E admits GMI(k), i.e.
IM>1 YneN YpeP, : |ple<M-nf-|ple.
Proposition 1.18 implies that

VvneN VpeP, : ||pHEl/n,c <M -|plg,

where M := e . From propositions 1.21 and 5.4 we know that the set F is A°°-determining.
Now we fix a function f € s(F) and for each n € Z we take p, € P, to be any polynomial of best
approximation, i.e. |f — p,||g = distg(f, P,). We define the desired extension f as follows:

o0
Fi=11-po+ Y Tn- (Pn—pn-1),
n=1

where w, € C*(C), n € N, is a sequence of cutoff functions as constructed in proposition 10.3 for the
compact set E and coefficient k.
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Similarly to the method used by W. Plesniak, L.P. Bos and P.D. Milman show that this series is
convergent together with all its derivatives. For this purpose let’s fix o € ZZ and n € N. We use the
Leibniz rule to see that

o~ a ~ o—
1D (i (o — o))l < 3 (5) (D% - DB (pr — o) e =
Z2
BBGS;—

—Z( ) 1D, - D* P (pp = pu-)llm,,0 < -

BLla

since up, = 0 outside of Ey /x,

<3 (5) 10Tl 1000 = o)l

B<La

<> ( > Clgy - n I A DB (p, — py) || <

BLla

because of the properties of the cutoff functions %, and the fact that D*~#(p,, —p,_1) is a holomorphic
polynomial of degree n at most,

o . A oy — (a1 —
< Z <ﬁ>'clﬂ|'”(k+l)|ﬂ‘M'M 1B gk ea=B) p — pai |l <

fLla
Bo=ag
07 — _ i ~
> <ﬁ> Clg - M - Mor=Pr gt 0lel i g = Co - nE 1R, —p s,
fLla
Bo=ag

where Cl, : Zﬁl<a1 (,81) CBi+as M - M®1=51 are constants depending solely on the set E.
Furthermore we have

lpn = Pnille = [[(n — f) = Pno1 = Olle SN = pulle + If = Pr-ille =
=distg(f,Pn) + diste(f, Prn_1) < 2-distg(f, Pn-1),
and therefore B
||Da (ﬁn . (pn _pnfl)) ||C < 20a . n(k+1)~|a\ . dlStE(f7 ,Pnfl)7
which for all n > 2 leads us to

(k+1): |
o~ ~ n
”D (un . (pn _pnfl))H(C < 2Ca . (Tl )(kJrl) [a]+2 |f| k+1)|a|+2-

Finally we obtain

1D flic < 1D (@ - po)llc + D 11D (@ - (b = Pa—1)) llc <

n=1

< Cloy - IIf |8+ 2Cq - distp(f, Po) + Ca - Sjal * |l k1) alr2 <
< (C\a| +2C, +C, - gm) Nl k1) 425

where for ¢t € Z we put

00 pk+1)t 0 o o(k+1)t . (1 1)(k+1)t
=3 <3 EE e =
— (n— 1)) t+2 —~ (n— 1)(+1)t+2
ERRTRATIVEE < SIS S L Se i
=2 > GoE 5 2 < +o0.

-

n=2
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A careful inspection of the constants reveals that for all a € Z% \ {(0,0)} we have

éa < Z (Cu) ) (d‘ (51 +a2))4-(ﬁ1+a2) . M Ma17,31 <
B1<an h

<y <gl> (d- |a|)4"‘¥‘ M- Ml < (2d-J\7.M. |a‘)4.\a|7
B1<ay !

~ ~ o~ Ja —~ 4| 2
Clay +2Ca + Ca - Sy < (d-|al)"* + (24 M - M - o -<2+7;-2<’“+”"a) <

4-|al

— 4| 2 —~ o [¢3 o
< (2d-M-M-|a|> | |-<3+7;-2<k+1>'|al> < (2d-M-M-\a|) 34729 < (dy - o)1,

while
72

Co+2C00) + Clow) - So S d+2d- M +d-M- % <Td-M < d,

where d > 1 is the absolute constant from proposition 6.8 on cutoff functions and d; := 4d - M- M -2k
depends only on the set E. Consequently for all £ € N we obtain

1flce = I1Flle + D IID*flc <

|| =£
< (CO +2C(0,0) + Co,0) - §0> fl+ Y (CM +2C, +C, - §‘a|> NFlkt1) jaf a2 <
|a|=2¢
4al 4¢
<di-|f]2+ Z (dy - |ef) N fl k1) a2 < (dl +(+1)-(di-0) ) N flgr1)e42 <

lov|=£

44 0
S+2) (d- 07 [ floenyere < (2 £8) - | flgs1yete, < 00,

where ¢g := 2 and ¢y := max {Sd‘f, 2M} depend only on the set E.

Now we know that f € C*°(C) we will show that f‘E =fand f € A (E). For this purpose let’s fix
z€ Fand a € Zf_ such that as > 1. It is easily seen that

fz) = (2) - po(2) + D @nl2) - (pu(2) = pu-1(2)) =

=po(2) + Y (Pn(2) = pu-1(2)) = lim pu(2) = f(2)

n—oo

and

Daf(z) = Dapo(z) + Z(Dapn(z) — Dapn—l(z)) =0,

because @, = 1 in an open neighbourhood of the set F, f € s(E) and the polynomials p,, are holomor-
phic.
Finally for a = (0,0) we will show something better. For v € N denote by S, € C>°(C) the partial

sum of the series f:
1% 1% v
Su = '171 'P0+Zﬂn' (Pn—an) :ﬂl 'pO"‘Zﬂn *Pn — Zﬂn *Pn—1 =
n=1 n=1 n=1

v v—1 v v—1 v—1
:ﬂl p0+zﬂn *Pn — Zﬂn+1 *Pn = Z'Enpn _ZﬂnJrl *Pn :ﬂu pu+zpn . (ﬂn_an+l)
n=1 n=0 n=1 n=1 n=1



MARKOV’S INEQUALITY IN THE COMPLEX PLANE 69

Since supp U 41 C supp ty, C Ey/px for all n € N we see that

palls, e < M- lpalls < M- (If = palls + 1) = M - (dists(f,Pa) +If5) <2M - ||f]s

and for any z € C we have
[t (2) - o (2)| < |un(2)] - lIpulle, 0 <2M - fll5 - U (2),

P (2) - (n(2) = Tns1(2))] < llpalle, o - [n(2) = Tns1 (2)] < 2M - [l - (Tn(2) = s (2),

by the assumption that the sequence u,, is positive and decreasing. Finally

v—1
1S,(2)] < 2M - [|flg - @ (2) + > 2M - [|fl| 5 - (n(2) — Ung1(2)) = 2M - | fl|p -t (2) < 2M - | Il

n=1
and consequently N .
F(2)| = lim |5,(2)] <201 - | f |
[fllco=fllc <2M -]z < c2-[[f]lz;
which finishes the proof of EXP(k + 1,4).
Conversely let’s assume that the set E admits EXP(k,u), i.e. it is A*°-determining and
Vfes(E) 3f € A(E)
(a) }T|E = fa
®) Nfllco < ec2-lIflle,

@) fllce < (ca- 0T | flrre, forall £ €N,

with some cg,c; > 0 and co > 1 dependent only on the set F.
Fix arbitrarily an integer ¢ € N, a polynomial p € P,, with some n € N and a point z5 € E. We can

apply EXP(k,u) to the restriction to the set E of the polynomial f(z) := (p(z) — p(zo))z, fie € s(E),
to obtain the following estimate

-1 (20) | = 1O ) < 1 ONle < flee = IfllEe < I flee < (2 €T | fimlhtcos

because the set F is A*-determining. Now obviously we have f € Py.,, and therefore distg(f, P;) =0
for all j > £ - n, which implies that

|fiElk-t+eo = | flIE JrSfugjk'Hco ~distg(f,P;) =
Jje

= flle+ max ¥ distp(f,P) < [Iflle+ (€-n—DFF.  max  distp(f,Py) <
j=1,...4n—-1 7j=1,...ln—1

< flle+ (€n =18 flp < (€m0 flp < (Cn)=e (2 p]p)"
We combine these two estimates to obtain
010/ (o)l < (e ) (€om) e (21 [p]lg)",
[P (20)] < (2 - €)' /0 (£ m) 0/t 2 |fp .
Because the point zy was arbitrary, we conclude that

1P|l e < M- 0o/t |lp|| g,

where My := (¢ - 6”)1“1/[ - fF+co/t .2 depends only on the set F. This implies that the set E admits
GMI(k + ¢ /£), so it suffices to take £ sufficiently large to obtain GMI(k"). O

REMARK 10.5. Remark 9.4 applies to the previous theorem accordingly.
The following lemma is due to L. Biatas-Ciez. It allows to deduce a pointwise Sobolev-type inequality
from a pointwise Markov-type inequality, for any function that is d-flat in just one point.
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LEMMA 10.6. Assume that the compact set K C C admits the following inequality in the point zg € K

/

J
) ) C/-nk
(1) Y0o<r<1 VneN VpeP, Vji=1,....n : |p(”(20)|§< ) ol KB (z0,r)s

rm’

where ', k', m' > 1 depend only on the set K and possibly the point zg. Then for any function g € C>(C)
that is 0-flat in the point zo and gk # 0 we have

j m’.j

g NI 1-md "
S (20/'€k) ||g||K ¢ '||g||cof1vK,£‘

PROOF. Fix ¢ € N and a function g as above, i.e. D%(z0) = 0 for all @ = (a1, as) € Z2 such that
g > 1. Therefore the Taylor polynomial has the following form:

Tfog(z) = Z 5 D% (z0) - (2 — 20)® = Z i . 0*g

! ay! 0z
Ja|<l-1 a;=0 "1

(20) - (2 — 20)™",

and thus T g € P,_; and g%j’(zo) = d—j-Tfog(zo) for each j = 1,...,¢ — 1. We apply inequality (1) to

0 dzl 2

the holomorphic polynomial Tfog to obtain

; N\ I
&g - (t—1)k
52 20| = | 7 Thote0)] < <W Nl

r

47
_‘dzj

‘ : : : VAN ¢
for all 0 < r < 1. Denote by R; g the Taylor remainder of the function g, i.e. R; g := g — T, g. By

proposition 5.2, the Taylor formula with the remainder of Lagrange, we have for any z; € C
‘ . 2¢ ‘
|Rzgg(zl)‘ S min 17@ : |Zl _ZO| : |g|[20721],€'

Consequently for any 0 < r < 1 we have

’
Cl~fk

< o’ : (||g||KﬂB(zo,r) + HRzogHKﬂB(zo,r)) < TT . (”gHK +r- |g‘coan,l)

@(ZO)

for j=1,...,¢ — 1, but obviously for 5 = ¢ this is also true.
1/¢
We put r := (M) <1 to see that

”chorw K¢

. : e N\
&g gl e e gl
Ei = m' /e A Ngllx + W “|9lconv Kt | =
||g||K Gllconv K £
NI mj 1-mi lg K0
:<CI'Zk) ||g||c0[;1vKl||gHK ¢ (1+|COHV>
, Hchoan,é
Because |g|conv k,¢ < ||glconv &,¢ We conclude that for j =1,...,¢ we have

. ' ‘s
1—m3 m’-

< 2/_£k’ j_ T, 7 0
= ¢ ||g||K ||g||c0an,Z'

&g
‘azj(zo)
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THEOREM 10.7 [cf. Eggink, theorem 9.5; cf. Bos-Milman, theorem B
compact set E CC C and k,u,s,v > 1 we have

For any polynomially convex

EXP(k,u) AJP(s,v) = SPH(1,k-s,k-v+u+1)
EXP(k,u) AWJIP(s) = WSPH(1,k-s)
PROOF. Let’s first assume that the set E admits EXP(k,u) and WIP(s), i.e. it is A*°-determining
and ~
Vfes(E) 3fe A®(E)
(a) }'V|E = f7

(b)

Ifllco < e2- 1If]lm,
(©) IIf]

(o - 0) T | flpotge, forall £ €N,
with some cg,c; > 0 and ¢ > 1 dependent only on the set £ and additionally

>0 W>1 3o >1 YO<s<1 VfeH(Es

Cg €+C0
|fiEle < (55) NN fl £
Without loss of generality we can assume that the sequence {¢;}sen is increasing

Fix arbitrarily 0 < § <1, f € H®(Es), L €N, j € {1

,{} and a point zyp € E. We can assume
that fip # 0, since otherwise the assertion would be trivial, because the set E is A*°-determining

By corollary 8.20 we know that fjz € H*(E) g C s(£) and thus we can apply EXP(k,u) to find a
function f € A (FE) as above and we can combine estimate (¢) with WJP(s) to obtain

~ k-l ¢
wy\L+c1 wy\{+c1 Ck-L+co reoteo
[fllce < (e2- ) - | fiplktteo < (c2-04) - | ——

= 111

Next we apply lemma 10.6 to the set K := F; and the function f Because for each 0 < r < 1 we
r)= r),

have K N B(zg,r) = B(z0,7), we see that the set K admits inequality (1) assumed in the lemma in each
point zg € F C K with constant coefficients ¢/ = k' = m’ = 1. Therefore by the lemma we obtain

o f
|8zf<zo> <

< (207 ¢

@O et M e < 267 - IIFIE - IIFIIE, <

. erg/e Chotr k-j+(co+co)-j/
g c1- c

TSI (e gyt ( )

e Ek ’ k-j+co+co
< (23 - w1y’ 1.< '+Co>
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A
AIflle, <

14 i dy J+do i
A 1N E < | 5es Al 111,

where dp := 2c3 - (ut! . ¢k

Chtte, and dp == max {c1 0“0 } depend only on the set E.
Since F is A*°-determining and f‘ E = flg we have ng = gz{ on the set £ and hence
~ 8jf dy gtdo 1-4
Al =17l = ’ o< Ge) i,
E

because the point 2y € F was arbitrary. This finishes the proof of WSPH(1, k
Finally if we assume additionally that ¢, <'¢; - €Y, i.e. the set E admits JP(

dy < 203-

- 8).
s,v), then we have

£u+1-51k (k €+Co)kv <20 (k+c )kv gkv—i—u-l—l

which proves SPH(1, k- s,k-v+u+1). O

We are now ready to state the second part of our main result by simply combining theorems 10.4
10.7 and 7.9.
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THEOREM 10.8. For any polynomially convex compact set E CC C and k,s,v > 1, we have the
following strings of implications:

GMI(k) AJP(s,v) = EXP(k+1,4)AJP(s,v) = SPH(1, (k+1)-s, (k+1)-v+5) = LMP(m’, k'),
GMI(k) A WIP(s) = EXP(k+1,4) AWJIP(s) = WSPH(L, (k+1)-s) = WLMP(m),
foranym’ > (k+1) s and k' > (k+1)-(3s+v) + 5.

Combining this additionally with theorem 8.24, corollary 8.28 and corollary 8.8, we obtain some
special cases.

COROLLARY 10.9. If a polynomially conver compact set E CC C admits HCP(k) and ES(s), with
k,s > 1, then it admits LMP(m/, k") for any m’ > (k+1)-s and ¥’ > (k+1)-(3s+1)+5.

COROLLARY 10.10. If a compact set E CC R admits HCP(k), with k > 1, then it admits LMP(m/, k')
for any m' > k+1 and ¥’ > 4k + 9.

COROLLARY 10.11. If a compact set E CC R admits GMI(k), with k > 1, then it admits LMP(m/, k')
foranym’ > k+1 and k' > 9k + 14.

REMARK 10.12. Compare the last corollary with [Bos-Milman, theorem B], which asserted the fol-
lowing string of implications for any compact set £ CC R and k& > 1:

GMI(k) = EXP(m,4) = SPQ(m, k') = LMP(m’, k"),
for any m’ > m > k + 4, provided that m € N. No explicit statement was given concerning k', k" > 1.

REMARK 10.13. If we know that a polynomially convex set E CC C admits GMI(k) and LMP(m/, k')
for some k' > k > 1 and m’ > 1, then we could ask whether it is possible to improve the coefficient &'7
Note in this context the example of the unit ball, which admits GMI(1) and LMP(1,2), but does not
admit LMP(1,1).

REMARK 10.14. L. Bialas-Ciez has recently constructed a family of examples of polynomially convex
compact sets in the complex plane, which admit GMI, but are not m-perfect for any m > 1 and therefore
they do not admit LMP. Moreover, these sets do not admit LS. These examples show that without the
assumption JP theorems 10.7 and 10.8 would not be true.

During our search for the weakest possible assumption, which in conjunction with GMI would allow
to assert LMP for any polynomially convex compact set in the complex plane, J. Siciak presented us
with the following example showing that, differently from Jackson’s theorem in the complex plane 8.24,
the property LS, and thus also JP, is not a prerequisite for Markov’s properties.

EXAMPLE 10.15. Put E := B(—2,2)UB(2,2), which is a compact set consisting of two adjacent balls.
Obviously the set F is simply connected and therefore by remark 1.20 and corollary 7.7 it admits GMI(2)
and LMP(1, 3). Consequently by theorem 10.4 and corollary 7.11 we know that it also admits EXP(3,4)
and SPH(1,1,8). However we will show that the set E does not admit LS, which by proposition 8.26
implies that it does not admit JP or even WJP. Hence in theorem 10.7 the property JP, respectively
WJP, is not the weakest possible assumption necessary to assert SPH, respectively WSPH.

Indeed it can be easily verified that ¢(z) := % is a conformal mapping of the set ® \ E onto the
belt K := {z€C : —1 <Rz < 1}, Furthermore it is known that ¥(w) := cot(r - w) is a conformal

mapping of the belt K onto the set C\ B(0,1). Consequently by theorem 1.11.c we have for all z € C\ E

T cos 7'('/2 ewi/z + e—ﬂ'i/z eQﬂ'i/z +1
Bp(z) = W - ‘ ¢ f’ - - & BN ,
E(Z) | © ’(/)(Z)| co 2 SiIlTF/Z eTi/z _ o—Ti/z e2mi/z _ 1
and specifically we see that for 0 < y < 2 we have
e /v 41 2 2e~27/y )
) =|—""| = B —— _— - 7T/y
Dr(y-i) 62”/9—1‘ S 1 1+1_6727r/y<1+3e .

On the other hand it is obvious that
2

2
dist(y~i,E):\/4+y2—2:y72yf
Va+yr+2 5

and therefore the set E cannot admit LS.

We finish with an interesting application of the extension property.
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PROPOSITION 10.16. Assume that the compact set E CC C is the sum of two polynomially convex,
disjoint compact sets, i.e. E=AUB, A=A, B=B and ANB = 0. Assume also that k,u > 1. If
both sets A and B admit EXP(k,u), then the set E admits EXP(k,u + 4).

Conversely if both sets A and B are additionally non-polar and the set E admits EXP(k,u), then
both sets A and B admit EXP(k,u + k).

PROOF. In order to prove the first assertion, we first note that if f € s(E) then fj4 € s(A) and
fip € s(B). Subsequently we find extensions for fj4 and fjg by applying the property EXP(k,u) for
the sets A and B, respectively. It is easy to see that, by using an appropriate cutoff function, we can
glue these two separate extensions into one extension for the function f, meeting all the requirements
of property EXP(k,u + 4) for the set E.

The second assertion follows straight from lemma 8.29. Indeed we can extend an arbitrary function
f € s(A) to the set B by putting f(z) := 0 for all z € B. By the lemma we have for this extension
f € s(F) and

VEz1 o [fle < (-0 (Iflale+ 1file) = (c- 0 - | fiale,

where the constant ¢ > 1 depends only on the sets A and B. Hence we can apply property EXP(k, )
for the set E to obtain another extension f € A*(E) C A>(A) and we see that this extension meets
the requirements to assert EXP(k,u + k) for the set A. Obviously an identical argument applies to the
set B. O

COROLLARY 10.17. Assume that the compact set E CC C is the sum of two polynomially convez,
disjoint, mon-polar compact sets, i.e. E=AUB, A=A, B=B, ANB =1, capA >0 and cap B > 0.
If the set E admits GMI(k), where k > 1, then both sets A and B admit GMI(k") for any k' > k + 1.

PrOOF. Theorem 10.4 implies that the set E admits EXP(k + 1,4) and from proposition 10.16 it
follows that the sets A and B admit EXP(k + 1,k + 5). Hence we can apply theorem 10.4 again to
deduce GMI(K'). O
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CHAPTER XI

OPEN PROBLEMS

Below is a review of some open problems related to the topics discussed in this dissertation. Some
of them have been studied intensively already by other specialists in the field, while the rest of them is
strictly related to new ideas introduced here.

PROBLEM 11.1. Suppose that a compact set £ CC C is the sum of two disjoint, polynomially convex
sets: E=AUB, A=A, B=B, An B = 0. If the set E admits GMI, does this imply that the sets A
and B also admit GMI?

Corollary 10.17 solves this problem only under the additional assumption that the sets A and B are
non-polar. Clearly also if the set F admits LMP, then by remark 3.2 both A and B admit LMP and
thus GMI. But what happens if the set E does not admit LMP nor JP and one or two of the sets A
and B is polar?

By the way, the conjecture is clearly not true if we allow the sets A and B to share even one common
point.

PROBLEM 11.2. Although the class of (m, s, k)-perfect sets defined in chapter 4 gives significant
insight into the geometry of sets admitting WLMP, simultaneously we see that there remain obvious
gaps to be filled. The geometric conditions contemplated in proposition 4.7 are not equivalent to
(m, s, k)-perfectness and that’s why we obtain suboptimal and actually slightly awkward assertions in
corollaries 4.8, 4.16 and 4.17.

So how can we characterize (m, s, k)-perfect sets, specifically when 1 < s < m? Could it be possible
that sets admitting LMP(m, k) are (m, 1, k)-perfect for all K € N\ {1}? Interestingly, L. Bialas-Ciez
was able to prove (personal communication, see also [Frerick, corollary 4.10], [Altun-Goncharov], [Gon-
charov 1], [Eggink, theorem 10.1] and [Tidten 2, theorem 2]), that (m, 1, k)-perfect sets admit Whitney’s
extension property. Maybe this framework can be used to prove HCP?

In this context the work of L. Carleson and V. Totik should be mentioned. They have formulated a
criterion for HCP in terms of capacities, very similar to Wiener’s criterion for L-regularity. Even more
interestingly, whereas for compact sets on the real axis this criterion is equivalent to HCP [Carleson-
Totik, theorem 1.1], in general for sets on the complex plane an additional cone condition or quantitative
condition is needed [Carleson-Totik, theorem 1.2]. These latter two conditions are clearly linked to the
examples mentioned in chapter 10. See also [Siciak 4].

PROBLEM 11.3. By corollaries 2.10, 4.12 and 10.10 a compact set on the real axis that is uniformly
perfect admits WSMI(1), HCP and LMP, respectively. But does it also admit SMI(1, k) and LMP(1, k)
for some k > 17

PROBLEM 11.4. Is it possible to construct in proposition 6.8 cutoff functions u € C*°(C), which
decline with the radius €? If yes, then there would be no need to modify their construction in proposition
10.3 and consequently in theorem 10.4 we would have GMI(k) = EXP(k, 4).

PrROBLEM 11.5. Is it otherwise possible to improve the coefficients in theorems 7.10 and 10.87

PROBLEM 11.6. Does each polar set in the complex plane admit JP? If yes, then this would render
another proof of the fact, proven by L. Bialas-Ciez [Biatas 2], that compact sets in the complex plane
admitting GMI are not polar.

PROBLEM 11.7 [Plesniak 1, open problems]. We still don’t know whether all compact sets in the
complex plane admitting GMI are L-regular. For sets on the real axis this problem was solved by the
combination of the results of [Bos-Milman| and [Bialas-Eggink 1]. This problem seems to be closely
connected with problems 11.1 and 11.6.



MARKOV’S INEQUALITY IN THE COMPLEX PLANE 75

PROBLEM 11.8. Is it possible to weaken the assumptions of lemma 8.22 (and consequently theorem
8.24) by replacing HCP with GMI, without assuming L-regularity? If yes, then we would have

GMIALS = GMIAJP = EXPAJP = SPHAJP = LMPALS = GMIALS.

If not then there must exist a set, which admits GMI but not HCP, showing that there is no equivalence
between these two properties. In order to prove this, it would be sufficient to construct a set admitting
GMI and LS, but not admitting LMP.

ProOBLEM 11.9. Example 10.15 shows that the property JP is not the weakest possible assumption,
which in conjunction with property EXP allows to assert SPH in theorem 10.7 for any polynomially
convex compact set in the complex plane. In which direction should we search for such a weakest possible
assumption?

A simple generalization of the property JP clearly does not do the trick. Indeed it is already defined
in terms of a very narrow class of functions, i.e. functions that are holomorphic in some large open
neighbourhood of a fixed compact set, while the regular norm on that neighbourhood is the most
convenient possible and the dependence on § cannot be weakened further.

Could the property that A (E) g = s(E) have anything to do with this? Note that if a compact
set £ CC C admits this property as well as EXP, then we can apply EXP to any function of the class
A% (E)|g in order to obtain an estimate for its quotient norms in terms of its Jackson norms. Moreover,
thanks to the continuity of the map C(E) > f — distg(f,Pn) € R, for any n € Z,, the space s(F)
is complete in its own Jackson topology. Consequently, by Banach’s open mapping theorem [Rudin 1,
theorem 2.11], the Jackson and quotient topologies coincide. This in turn by itself implies GMI for any
set that is A°°-determining, just like in the second part (<=) of the proof of theorem 9.2 [cf. Plesniak
1, theorem 3.3.iv-v].
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symbol

R4 and Z4
k,m,s,v
a,b,c,d
int ¢

z=x+y- 1
xrort
arg z

r

]

B(z,r) or simply B
[20, 21]

(m, s, k)-perfect sets
For K

I

int £

conv E

diam F
dist(z, F)
dist(E, K)
cap

P(C) or simply P
Pn(C) or simply P,
Pn(R)
c=(C)
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NOTATIONS

stands for

the extended complex plane

the sets of non-negative real respectively integer numbers
the main coefficients used in the analysed properties
some irrelevant constants, usually dependent on the set F
the integer of a positive number ¢

a point in the complex plane

a point on the real axis of the complex plane
the argument of a complex number

the radius of a ball

a distance

a closed ball centred in z with radius r

a closed interval

see definition 4.5

a compact set in C or R

an interval in C or R

the interior of the set F

the convex hull of the set E

the polynomial hull of the set

a closed neighbourhood of the set E as defined in definition 1.13
a closed neighbourhood of the set F as defined in definition 8.15
the boundary of the set F

all points for which the distance to the set E equals ¢

an open domain in C

the closure of the domain 2

the diameter of the set E

the distance between the point z and the set F
the distance between the sets F and K

the logarithmic capacity of the set E

the space of polynomials with complex coefficients

the space of polynomials of degree n or less with complex coefficients

the space of polynomials of degree n or less with real coefficients

the space of functions on C that are infinitely differentiable (smooth)

the space of functions of the class C>(C) that are d-flat on E

the space of functions of the class C*°(C) that are holomorphic
in some open neighbourhood of the set E

the space of functions that are continuous on a compact set F

the space of functions that can be rapidly approximated by polynomials

the space of Whitney fields



symbol

porgq
degp
n

lp|5 and |p|s
Sp

supp f

£l e

|f|E,e and HfHE,é
£l ,e

1 flz.

(fee

| fle
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stands for

(holomorphic) polynomials

the degree of polynomial p

the degree of a polynomial

see definition 2.3

Siciak’s extremal function of the set E

functions used in the definition of the extremal function
Green'’s function of the set C\ E with its pole at infinity
the level sets of the extremal function ® g

a function of class C*°(C) or narrower

the function f confined to the set

the partial derivatives of a complex function f

the first and subsequent derivatives of a holomorphic function

a Lagrange interpolation polynomial of degree n for the function f

the Taylor polynomial of the function f of degree ¢ — 1 around the point zg
its remainder

the distance on the set E between function f and P,

the support of the function f

the usual supremum norm

norms defined in definition 5.1

Whitney norms defined in definition 5.5

quotient norms defined in definition 6.1

holomorphic quotient norms defined in definition 6.5
Jackson norms defined in definition 8.1
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